: [4 s ’)
_\ N -, ©) '
2 { g SERC
0y « 8 i _ ‘ .
T ' ¢ oo .

>
N\

FEEE SOT MW ARE ENGINT T RING WSARCTT TN N

03

"GEORGINVANSTINU IO FICHNOTOGY
VEEANE A G ORGTN (s ey, L

ol - .
e ¥ . \ . . -
, ' AN

a1

» 13 |' ’ . N ’ . N
VLo P dhie Uiontver sy Sastong ol Coeaaeg

Y

USDR&® (T&E)

Software Test and Evaluation Project

GIT-SERC-87/03
Software Test and Evaluation Ma2zual
Volume II
GUIDELINES FOR SOFTWARE TEST AND EVALUATION
in the

DEPARTMENT OF DEFENSE

25 February 1987

Prepared for

OUSDRE (T&E)
The Pentagon, Room 3E1060
Washington, D, C,. 20301

Supported by

U. S. Army Migsile Coummand
ATTN: AMSMI-PC-BFB
Redstone Arsenal, AL 35898-5280

4

7

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPCRT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

(T REFORY NUMBER 2. GOVT ACCKESSION NO|
GIT-SERC-87/03 l

YT Y Y .
3. RECIPIENT'S CATALOG NUMBER

A, TITLE (and Subtitle)
Software Test and Evaluation Manual, Volume 11,
Guidelines for Software Test and Evaluation 1

8. TYPE OF REPORT & PERIOD COVERED

FynafTechnical Report

in the Department of Defense

§. PERFORMING ORG. REPORT HUMBER

7. AUTHOR(s)

Software Test and Evaluation Project

GIT-SERC-87/03
8. CONTRACT OR GRANT NUMBER(s)
BOA DAAHD1-85-D-A0CS
DO 0008 and 0012

9. PCAFOAMING ORGANIZATION NAME AND ADDRESS
Software Test and Evaluation Project
Software Engineering Research Center
Georgia Institute of Technology, Atl. GA 30332

REA & WORK

et ey et —
10, PROgIA ELED’S'ENT.PROJECT. TASK

1. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Missile Command

12. REPORT CATEK

February 25, 1987

Redstone Arsenal, Alabama 35898-5280

13. NUMBER OF PAGES

122+ vyiiid
1. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Ollice) 15. SECURITY CLASS. (of this report)
Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING

EDULE

[——
16. DISTRIBUTION STATEMENT (of this Report)

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilferent irom Repert)

8. SUPPLEMENTARY NOTES

'
!
1
L
|
i
1
|
L

19. KEY WORDS (Continue on severse aide I/ necesaary and identily by block number)

tools and resources

Software Test and Evaluation Manual; Software Test and Evaluation Project(STEP);
mission critical computer resources; software test and evaiuation (T&E);
risk assessment; operational and technical characteristics; software test

20 ABSTRACT (Contlinue on reverses side If necessary and identity by block number)
The Software Test and Evaluation Manual is a

These manuals are aimed at improving the test and

three volume reference set

that provides checklists and guidance to Department of Defense components in
the area of software test and evaluation for mzjor Defense system acquisitions.
evaluation of major systems
through improved acquisition management and risk reduction nrocedures. ;

This manual addresses the structuring, planning, conduct, and evaluation -
of software tests throughout the acquisition process.

(continyed - over)

Volume II is intended

DD , 5iN"7 1473

EDITION OF 1 NOV 63 IS OBSOLETE
S/N 0102-014- 6601 |

ied o
SECURITY CLASS!IFICATION OF THIS PAGE (When Data Entere:

___unclassified

20.

. for use by the Service Headquarters, Deveiopment Commands, Program Offices ' ‘
and Contractors, Development Test Agencies, and Operational Test Agencies.

SULYRITY CLASSIFICATION OF THIS PAGEMhen Dats Entered) - ‘

nedifipgty e

unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enteted)

Preface

The Software Test and Evalustion Manual is a three volume
reference set that provides checklists and guidance to
Department of Defense components in the area of software test
and evaluation for major Defense system acquigitions. Theae
manuals are :imed at improving the tast and evaluation of major
systems through improved acquisition management and risk
reduction procedures.

Volume I, Guidelines for the Treatment of Software in Test
and Evaluation Master Plans, ig devoted to providing consistent
guidelines for the preparation and evaluation of Test and
Evaluation Master Plans (TEMPs) for major software intensive
systems containing mission critical computer resources. It
consiste of a checklist i.e., & series of questions that are
keyed to the major paragraphs of a TEMP, and an accompanying set
of explanatory notes that provide brief commentaries on the
questions and the significance of the possible responses to
then, '

Volume II, Guidelines for Software Test and Evaluation in
the Department of Defense, addresses the structuring, planning,
conduct, and evaluation of software tests throughout the
acqQuigition process. Volume II is intended for use by the
Service Headquarters, Development Commands, Progrew Offices .nd

Contractors, Developrent Test Agencies, and Operational Test
Agencies.

Volume III, Good Examples of Software Testing in the
Department of Defense, is based on major programs which have
benefited from many of the principles advocated by and detailed
in Volumes I and II of this set. In particular, Veolume III
cummarizes sample statements of work and contract text, program
management hints., and other experience which has been derived
from exemplary software testing efforts.

Tadb'!e of Contents

1. Introduction L] L . L] L] L] L L] L L] L] L L] L L] L] L [] L] L] . .

2., Rigk AgsesBmEnt. . . ¢ « o« « ¢ ¢ o o o ¢ ¢ o o s s o o »
2.1 Identifying the Role of Software in the System
2.2 Assessing the Risks of Software Implemented Functionmns.

3. Operational and Technical Characteristics. . « ¢« « ¢« o
3.1 Determining Software Contribution to Required
CharacteristicB. « +« ¢ ¢ ¢ o ¢ o o o « o o s o s o
3.2 Identifying Critical Software Test and Evaluation
IB8UEE . ¢ ¢ ¢ ¢ o ¢ o s o 4 2 e s s e & & & & s e
3.3 Determining Software Specification and Demonstration
Milestones « .« « ¢« o« « ¢ o o o o o s o o o o o o & »

4. Management and Schedules . « . ¢« « o ¢ ¢ o o« « o o o & «

4,1 Identifying Software Test and Eveluation Organizations

4.2 Balancing Test and Evaluation Activities« .« .

4,3 Sharing Information between Organizations, . . .+ . . .

4.4 Scheduling Software-Related Events . « « « « « o & s o

4.5 Utilizing Technology as a Management Aid « &
Planning and Reporting . « ¢« « ¢ « ¢ o o o ¢ o « o o o o
1 Understanding the Test Planning Process. . . « « + + .
2 Planning for the Demonstration of Software

characteristics. L] . . L L] . . * L) - . - . .
5 .3 Report in8 Test Results . . . e e e« e & &« e 8 e e & s @

€. Software Test Tools and Resources. . . « « o« o o o o o o
6. Specifying Requirements for Automated Support.
6
6

1
.2 Determining Tool Availability. « « ¢« ¢ o o« o + o o o o
3 Assesging the Risk of Using Selected Test Tools. . . .

Appendix A List of Acronyms . . + « 4 o« ¢ o o & o o o o o
Appendix B References . .« . « ¢ ¢ ¢ ¢ ¢ o o s & o o o o

Appenraix C Department of Defense Directives and Standards,

Appendix D Points of Contact . .« ¢ « « ¢ o« o ¢« o &+ o o o

21
22
27
41
49
49
52
57
59
61

63
65

69
94

105
105
110
112
115
117
110

121

gyl

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
F%gure
Figure

Figure
Figure

N
E J
[y
]
[y

[SNV R V. X I

~N

.
~

w w MU Wwwwe

.
~

(*]

(S RS NV N | wn

RO e N

Table 2.1-1

Table
Table
Table
Table

Table

- o am -~ .

~N

2.2-1:

ok At e L Mal. . . e o e e e eopien B YR

Figures

System Classification in texrms of Software
Inpottlncl. ¢ o o a 6 e o & e [

A Mission/Function Matrizx
An Interoperability Requirement .
Acquigition as a Cyclic Process .
The Software Maturity Matrix. . .
Relative Cost of Error Correction . o«
y

L] e o L] L]
[3 o e *
L L [
) - - []
e o e o
[] L4 [] L .

Functiongs to System Requirements Tracclbxlit
Matrix . « ¢ o ¢ ¢ o & o ¢ o o o o s o &
System to Software Requirements Traceability
M.trix L] L L] L] L L] L . L] L] L] L] . - L] L] L L] L]
Software Requirements to Top Level Design
Componentr Traceability Matrix . . « « ¢« « &
Software Top Level to Detailed Design
Components Traceability Matrix . . .
Subsystem M Implementing Function F
Reliability Incident Classification
Downtime Clagsgification
Software Examples« « « .+ .

. Ll L] -

L * L] L] L]
L 4 » - L -
L] L] L L[] *
e *» o o o

Tables

Percentage of Functions Supporting Mission Area

that Require Software . . « ¢ ¢ ¢ o« o o o« o "0
Relationship between Cperational Suitability

Definition and System/Software Quality Factors.
Quality Factors for Operstiomnal Characteristics,

Quality Factors for Technical Characteristics.

Organizational Test and Evaluation
Regponsibilities .« « « ¢ & ¢ o ¢ o « o o = &
Scope of Test Activities . . « ¢ « o o ¢ o« o

14
3
h2
43
64

74
77
79
81
50
97

100
101

12
18
26
28

50
55

o A o

CRAFTEK 1

INTRODUCTION

The effactiveness of military missions depends on computer
technology. As force multiplicrs, mechanismas for rapidly
responding to changing threats, or tools for extending the data
processing capetbilities of individuals, computers =-- and the
softvare that controls them =-- must function prorerly or else
mission objectives are undangared., By virtually any measure of
importance, softwvare technology has become the critical risk
factor in major Defenss systems. The principal role of test and
evaluation in the ascquisition process is to reduce risk =-- to
evaluste the extent to which a given Defensea system can be
relied upon to fulfill its mission objectives in times of need.
This manual explaing in basic terms how to construct and carry
out a3 software test and evaluation prograsm.

Why & separate manual for software tast and evaluation? In
the first place, there are management and engineering imbalances
between software and hardware that can only be rectified by
specifying how effective test und evaluation of software is
planned, carried out and evaluated. As long ago as 1974, a
Defenge Science Beoard Task Force studied these imbalances and
concluded: "Whereas the hardware development was...monitored,
tested and regularly evaluated, the software development was
not.¥ By 1982, the situation prompted the Secretary of Defense
to direct the Military Services to "...give priority to the
development of tools and techniques for testing of embedded
computers and software." He further directed that "Testing of
softwvare should achieve a balanced risk with the hardware."

Another reason for writing such « manuai is that it fills s
gap between system level guidelines and technical taxtbook
descriptions of software testing methodologies. Many
sacquigition managers are not software engineers. They have
agked for an accurate but nor-technical handbook that tells then
vhere to start and how to tell whether or not thev've left
anything out., Many software enginmers, on the other hand, have
little experience with the structured Department of Defenre
acquisition process. They have asked for clear indicatioms of
how software technology fits into the overall esystenm
development.

Chapter 1: Introduction

The goal of these guidelines is to improve the test and
evaluation of major systems through improved software
acquisition management and risk reduction procedures. This
manuel is intended for use by all those in the acquisition
comnunity who are concerned with the risks of developing major
systems that contain software. Thus, the primary audience
consists of:

Service Resdquarters,

Development Commands,

Program Offices and their supporting contractors,
Developnent Test Agencies, and

Operational Teszt Agencies.

It may also bde of interest to Software Support Agencies and
individuals within User Commands that become involved in
requirements definition and evaluations prior to a new system's
fielding.

The manual is structured to provide increasingly detailed
digscussions of software testing concerns that may arise at
various decision-making levels in an acquisition. Basic
definitions are reviewed and principles of test planning and
evaluation are illustrated with a number of examples. These
lead the reader to specific test methodologies and technologies
a8 well as suggestions for where to find help and other
resources. The reader should review the contentz of this manual
during the initial system planning stages for new acquisitions.
This should help avoid some common pitfalls, such as structuring
an scquigition that neglects softwarpe or delays decisions
concerning software resources until time constraints make a
progressive, systematic approasch to software testing impossidble
to implement.

After en initial review, this document can szerve as a
reference manu2l answering questions concerning softwvare test
management, m::hodologies, and issues.

This manual and its companion volume "Guidelines for the
Treatment of Software in Teat and Evaluation Master Plans™ have
been designea to present a complete approach to software test
and evaluation. These principles are consistent with existing
Department of Defense policy and guidance as well as current
Service regulations asnd standards. Furthermore, the testing
procecss outlined in this three volumec Software Test and
Evalugtion Manual has been routinely epplied to major recent
weapor systemr acquiriticns.

*~

Bt s

Chapter 1: Introduction

Despite its "How To..." appearance, this manual has some
limitations. First, the manual doces no: adopt or suggest a
cookbook approach to the software testing problem. Bven when
the reader makes & serious attempt to apply the principles
outlined here, there is much left to be done. The bDulk of the
engineering analyses that asre necessary for effective testing
aze highly specific to the system being developed, and no
"generic®™ software methodologies can replece them. Second,
rather than attempt a completely tutorial estyle or a completely
technical presentation, this manuel stears a middle course.
Readers who have only system level softvare test and evaluation
concerns as might be embodied in a Test and BEvaluation Master
Plan may rely on Volume I of this =manusl. Less experienced
readers will £ind portions of this volume somevhat demanding.
For those readerc, & number of textbooks and other tutoriel
naterials are available elsevhere. Pinally, there are
exceptions to the general guidelines presented here. The reader
should not be frustrated if the approaches which are advocated
in the remaining chapters do not apply intact to his or her
specific problem. Specializing the generic approaches to the
technologies or acquisition strategies requires engineering
judgement and skill that a msnual such as this can never
replace. In such cases, the reader should be guided by the
epirit and intent of the entire test and evaluation progran.

The first step in applying- sound software testing practices

to system acquisitions is to determine the amount of softvare.

testing that is required -- that is, the extent to which
software is a "rigk driver"™ for the system as a whole. Chapter
2, Risk Assgessment, outlines an approach for determining the
extent to which a system is dependent upon software and the
degree to which the system risk is inflated by software. It
includes criteria for determining the extent to which a systenm
containg migsion critical computer resources or iz software
inten:ive. Rigks resulting from operational requirements are
enalyzed in terms of both system leval and software level
requirements.

The next step in constructing an effective testing program
ie to define the specific goals or objectives of the test or

test phase. Chapter 3, Operational eand Technical
Characteristics, provides s detailed treatment of the process
of: (1) sidentifying thresholds for the software's required

contribution to system characteristics, (2) identifying
asso-iated test and evaluation issues, iné¢ (3) measuring
progress in the context o the system acquisition. 1Included are
testable definitions for software qualiry factors, eas well as
Typical critical test anc¢ evaluatior issuer that may b:
associsted with software characterigticse., Finelly, the use of a
Software Maturity Matrix tc¢ support "at-a-glance™ information

validity essessments during system/software reviews is
discussed.

w

Chapter 1t Introduction

Chapter &, Management and Schedules, includes the basic
elements necessary for understanding and controlling the
horisontal and vertical information flow associated with any
najor system acquisition. It provides an overview of the
organizations normally involved in each acquisition and their
troles as defined by appropriate policy documents. It also
describes the variety of testing activities that contribute to &
system's risk reduction and provides guidelines for their
selection when investigating specific operational or technical
characteristics. Finally, uechanisms for the management of
information and scheduling of software-related test events are
discussed.

The conduct of a software test is dependent on the test
pPlan that guides the test. The utility of test results, on the
other hand, depends on reporting them accurately and
neaningfully. Chapter 5, Planning and Reporting, provides a
roadpap for constructing effective software test plans at all
levela, beginning with the Test snd Evaluation Mester Plan and
continuing with the treatment of the DoD-STD-2167 test planning
documents. The guiding software testing policy of Department of
Defenge Directive 5000.3 introduces the process of determining
test objectives associated with critical test and evaluation
issues, and then selecting appropriate test approaches for the
test objectives. Reporting of test results and assessing the
softvare contribution to system capabilities is also digcussed.

Chapter 6, Software Test Tools and Resources, describes
requirements setting procedures for software testing tools and
methods for determining tool aveilability. Finally, options for
building sn organizational software test capability are
presented along with an analysis of the associated risks.

This document is the second of a three volume set entitled
the Software Test and Evsluation Manual. It has been prepared
by the Software Test and Evaluation Project sponsored by the
Deputy Undersecretary of Defense for Test and Evaluation
(DUSD(T&E)). Volume I of the set, Guidelines for the Treatment
of Software in Test and Evaluation Master Plams, provides
consistent procedures and criteria for the preparation and
evaluation of Test and Evaluation Master Plans, Volume 1III,
Good Examples of Software Testing in the Department of Defense,
cites useful practices drawn from major programs which have
benefited from many of the principles advocated by the Software
Test and Evaluation Project and detailed in Volumes I and Il of
this set,

- A,,_m-_‘_,mmw PN P

CRAPTER 2

RISK ASSESSMENT

Risk is an element of uncertainty in the Department of
Defense (DoD) acquisition process. Mathematically, risk is the
probability or likelihood of failing to achieve a specific goal.
In practice, the sources of risk that arise during system
development are too complex to be treated with great
nathematical precision. The goal of successful systanm
acquisition is the effective management of risk. Test and
evaluation (T&E) is a prime contributor to the process of
assessing risks. T&E is an important and integral part of the
overall job of risk management and the system acquisition
process.

There are three principle kinds of risk that are usually of

interest to decision makers and project management during a
system acquisition:

* technical
* schedule
* budget.

Technical risk is mainly determined by uncertainties im the
engineering process that may keep the system from meeting its
technical specifications or may adversely affect overall gystem
quality and performance. Schedule risk refers to 211 of the
factors that may negatively impact the acquisition milestones.
Budget risk refers to all of the factors that may cause
unacceptable breaches of development cost allocations.

Sometimes, scquisition decision makers combine many kinds
of risk into a single factor, called decision risk. Decision
risk is the likelihood that an incorrect decisgion will adversely
impact the attainment of system mission objectives. An example
of decision risk is the likelihood that a decision to deploy a
given weapon will result in the fielding of a system that is
unsuitatle for use by troops in combat. When accurate and
complete T&E has been carried out and clearly reported, the
decision maker has all of the information needed to reduce the
decision risk., This is 8 critical step in risk management.

mscsssssebetesibndmsnes

pray

e A e M m A el a

- ——

————

-

Chapter 2: Rigk Assessment

Scftware often represents a sipnificant source of risk in
complex systems. Assessiny softvere d:2velopment risk through an
effective software T&E prog am is often & key factor in
determining and ultinrately reducing overall system risks, Prior
to assessing the software risk, however, it 1is necessary to
identify the role that software will play in the systenm. For
exsmple, in some systems, software implements functions that are
critical to meeting operatinnal objectives. In other systems,
software may represent & significant rigsk to the development
effort (measured in dollars, for instance) even though it does
not carry out any single function that directly affects system
performance. Thig chapter outlines an approach for determining
(1) the extent to which the system is dependent upon software
and (2) the degree to which the system risk is inflated by
software.

2.1 TJTdentifying the Role of Software in the System

Two kinds of systemgs present software-related risks of
major proportions:

* systems containing mission critical computer resources
(MCCR)
* software intensive systems.

This method of classifying systems is not the only cne, but
it has been particularly useful in making early and accurate
software visk assessments. As illustrated by Figure 2.1-1,
systems for which software plays a key role can be either type
described above, or both types. The finer points of such
classifications are lese important tham the following: if a
system meets any of the criteria described belnw for MCCR or
software intensive systems, then it is very prnbable that
software represents &8 main source of risk during system
development.,

Mission Critical Computer Resources

The term "mission critical™ when applied to software is
used in both formal and informal senses. In & formal sense, it
means any software that €falls under & legal definition of MCCR
and therefore is subjex: to the highly managed acquisition
process defined by DoD Directive (DoDD) 5000.1, Major System
Acquisitions. When used informally, "mission critical®™ software
simply means softwnre that it essential tc the successful
performance of mission objectives, regardless of whether or not
the system as a whole is classified as containing MCCR. If the
system acquisition is managed under the auspices of DoDD 5000.1
or under Service specific policies and guidance, it is best to
treat the software ar a2 miggion critical resource.

FONVLHOdNI 3¥VYMLIOS 40 SWYHEL NI NOLLVOIAISSYTO W3LSAS :i—1'¢ 3unold

- —— et o —— i e ot

FHYML40
\

Chapter 2: Risk Assessment

The Warner Amendment, 10 U.S.C. 2315, and Section 90& of
the FY 1982 Defense Authorization Act define MCCR to include
automatic data processing equipment or services whose functions
are:

* Intelligence Systems

* Cryptologic Systems Related to National Security
* Command and Controi of Military Forces

* An Integral Part of a Weapons System (i. e., physically
a part of, dedicated to, or essential in real-time to
performance of the mission of weapon systems; used for
specianlized +*raining, diagnostic testing and
maintenance, simulation, or calibration of weapon
systems; or, used for research and development of
weapon gystems)

* Critical to the Direct Fulfillment of Military or
Intelligence Missions including logistics systems which
provide direct support to operating forces or provide
direct suvpport to maintenance of weapons systems (e.g.
organic supply, software support facilities for weapon
systems, etc.).

The original 'intent of these definitions was to exempt
computers associated with weapon or intelligence systems from
the General Services Administration procedures for acquiring
data processing equipment. This was in recognition of the fact
that computers intended for the applications noted above are
frequently different in function, availability, and purpose from
computers intended for business or research data processing.

Software in the systems listed above has potential
importance to the satisfaction of mission essential operational
requirements. In general, there are two types of mission
critical software: application (or operational) software and
support (or non-operational) software. Mission critical
application software implements mission essential operational
requirements. Mission criticel support software implements
softrare engineering functions and is used during the
development and maintenance of the mission critical application
software. When mission critical softwaere existes ir & svstem,
the test program must be planned, conducted, and evaluated to
ensure that system performance will not be impaired by
improperly designed, implemented, or maintained software.
Requirements for mission ¢ritical software can often be
identified very early in the system acquisition process. If
this determination is delayed too long, effective T&E will be
impossible,.

Chapter 2: Risk Assessment

Software Intensive Systems

The term "gsoftware intensive™ is used to describe those
systems in which software presents special sources of risgk,
regardless of whether or not the software implements mission
critical functions. If a system dces not contain MCCR software,
it may still be software intensive and require & systematic and
disciplined approach to testing.

Tests For Software Intensiveness
There are a number of tests that will determine whether a
system is software intensive, The following examples will be

discussed below:

* Do software costs dominate the total system development
budget?

* Does the software contribute significantly to the
operational and support costs of the gystem?

* Are large smounts of software required?
* Is software needed for successful system operation?
* Does the software integrate or interface a number of .

systems that must interoperate?

If the answer to any of these questions is "yes", the scoftware
intensive nature of the system gives rise to risks. In the
first three cases, budget and schedule riskse are implied. The
latter two cases imply higher technical risgks.

Development Cost Estimation

By most estimates, software costs (which are projected to
reach $31.2 Billion for the DoD by 1990) constitute the major
share of system development costs. An often-cited estimate of
the Electronics Industries Association is that more than 80% of
the cost of developing & typical weapon system is devoted to
software development [EIA 84].

Nevertheless, determining the ratioc of hardware development
costs to the corresponding costs for software may be difficult
to do in practice. One reason for thies is that syvystenm
acquisition coste are frequently quoted for the entire
acquisition, not just the development phases of the acquisition.
Even though software may represent 802 of the development
budget, the average contribution of software to the total
acquisition is less than 1C% [Boe 81]!

'

Chapter 2: Risk Assessment

This large difference is due mainly to the fact that total
acquisition budgets include the costs of manufacturing and
testing multiple platforms. Such costs are not generally
spplicable to software, When comparing costs, differences in
the processes used to develop hardware and software nust te
considered. Development cost drivers for the hardware portion
of a system are those associated with design, tooling, and
production; where production costs are driven by the number of
systems being produced and cae cost of materials. Cost drivers
avgociated with the development of the software portion of a
system are also those of design, tooling, and production. In
this case, however, production costs are negligible once the
first software system is produced. Therefore, when comparing
development costs, it is essential that software development
costs be compared with the appropriate hardware development
costs.

Another concern when estimating the cost of software
development is ensuring that the total complement of system
software is considered as opposed to the application or
operational software alone. Non-operational software that is
crucial if the system is to satisfy mission goals may include
simulation, training, and diagnostic software, as well as
support software. The costs associated with the development,
testing, and maintenance of this software must be factored into
the analyses whose purpose is to determine the impact of
softvare on the system acquisition cost.

Life Cycle Cost Estimation

Sometimes, just estimating acquigition costs is not
sufficient. It is common to move from one phase of a system
acquisition to the next with immature software. Such software
will be brought tc & mature state during later, operational,
phases of the system's life cycle. The cost of these activities
(frequently classified as maintenance) does not get charged to
the system's research and development budget. Therefore,
estimating the so-called 1life cycle costs for the software may
provide a better determination of how software intensive the
system really is.

As with the development processes, the maintenance
processes also differ for hardware and software. Thus, software
maintenance costs should be derived separately from the
corresponding hardware costs. Hardware maintenance cost drivers
(e.g., availability of spares, logistics delays) are those
associated with production. Production costs are driven by
material costs and the number of systems being maintained or the
number of parts being produced. On the other hand, since
scftvare maintenance accommodates changing requirements and the
correction of errors by redesigning, recoding, and retesting
software components and subsystems, software maintenance coste
are heavily influenced by the costs of re-engineering.

10

e ed

—

Ty

Chapter 2: Risk Assuosment

Furthsrmore, the support softwvare used during the
development phase may not be available for maintenance
activities. In this case, the life cycle cost estimates nust
incorporate the expense of acquiring support software
specifically for use during the maintenance phase.

The Quantity of Software

The sheer asmount of softwvare that is required is often a
significant source of risk. It is comsmon to measure the
quantity of software in terms of Source Lines of Code (SLOCs).
Another common measure is the smount of computer memory in bytes
or words taken up by the operational software. The latter
measure, of course, excludes supporting softwvare and may present
& seriously misleading picture of the true magnitude of the
software development effort.

Many studies indicate that software engineers produce SLOCs
at an average rate of 400-800 per month (this average depends on

numerous factors, including the nature of the application and

the kind of programming language being used) [Boe 81].
Therefore, GSLOCs is usually a reasonable estimastor c¢f schedule
risk. In sddition, most scftware development cost models also
use the amount of software as the major cost driver. Less
obvious risk factors that are often heavily influenced by the
amount of software include those that reflect operational
parameters. For example, industry wide data indicates a strong
correlation betwveen software size and the number of design flaws
or "bugs™ that are in the software. Thig, in turn, affects
operational reliability.

In some acquisgitions, software is acquired Commercially
Off-the-Shelf (COTS). This is especially common in command and
control applications, where many system functions can be
implemented in generic decision support or communications
softwvare packages. The quantity of COTS software in the system
may be a significant source of risk, even though many other
risks are reduced by acquiring the software COTS. For example,
the successful integration of diverse commercial software
packages depends on uniform interfaces, If the software is
acquired from different vendors, the interfaces may be highly
incompatible. These concerns inflate the risk of utilizing COTS
support software as well as COTS application software. Another
example is the maintenance risks associated with a large number
of commercial packages; this is especially relevant in a
desk-top computer or workstation environment in which
maintenance 1is normally supplied only through the vendor.
Finally, the failure rate of & collection of independently
developed packages tends to grow as &8 function of the number of
such software packages in use.

11

Chapter 2: Risk Assessament

Critical Software Components

A system is software intensive if its functions depend on
software for i%s successful implementation. In this case, most
of the technical risk associated with the system is concentrated
on the software. Virtually all systems above the purely
mechanical level that are currently in production, or are being
planned, are software intensive in this sense. According to one
recent study, 702 of the technologies, functions, systems, and
actions identified in the Defense's 1long range plans require
software [Red 84]. Many of these systems are not MCCR systems.

Table 2.1-1 contains estimates that can be used as a guide
when assessing whether or not there is significant technical
software risk associated with & new system development. These
parcentages represent the proportion of functions for each
migsion area listed that require software for succesgful
implementation [Red 84], For example, & communications function
in a new system is virtually assured of being software
intensgive.

A system may, in addition, require software for successful
cperation even though no specific mission or functional area is
addressed by the software., Examples include CAD/CAM and support
software development, training and simulation, computer graphics
and human interfaces, and decision support. A sgsystem having
functional capabilities in any of these areas, or having
significant interfaces with systems that provide these
capabilities, is probably software intensive,

¢ Command and Control . . . ¢« ¢ ¢ ¢« « ¢ & o s o s o o« » » B88%
t Close Combat. . « ¢ ¢ ¢ ¢ ¢ « o « o « o« s o s o ¢ o &« « 18%
! Fire SUPPOTL. « & ¢ 4 4 ¢ o o o o o o o o « o o « o o« o 62%
? Air DefensBe . . . ¢ . ¢ 4 ¢ e o e e o s s s e & e s o o« 897
¢ Intelligence and Electronic Warfare + ¢« « + « » 83%
P CommunicABtiONB. « « 4 ¢ 4 o s o s o & s s e s e e s« o 1007
! Combat Support, Engineer, and Mine Warfare.
¢ Combat Service SUPPOTrt. .+ « ¢ &+ « o« o« o o & o o o o o
P ATrmMY AvIAtIiOoNn . 4 v v 4 e e e e e e e e s e e e e e
¢ Stretegic Offenmse ¢ 4t i 4 4 e e e e e e v s
¢ Strategic Defense ¢ ¢ 4 4 4 4 e e e e e b
¢! Tactical Air Warfare. . . + ¢« o o o o« o o o o o o« « « « 632

e & o o
[e o]
N
]

.
F
0
L]

Tactical Reconneissance « & + & + ¢« « &« + « . . 838%
! Electromnic Combat .« « « v « « « 5 + &+ o o o o o o « o « B86%
! Dats Base Management.+« + « 4 « « « . . 100%
P Date Fusion . v ¢ « . ¢ v v v v 4 e e 4w e e w . 4. o J100%

Table 2.1-1: Percentage of Functions Supporting Mission Area
that Require Software

12

b s e

Chapter 2: Risk Ag. uasmernt

Finally, it may be significant that the scftware
requirenents in a system represent "upgrades™ to existing
capabilities. The automation of previously manual functionms,
the introduction of new functions toc previous software
components, and the redeployment of existing software on new
hardwave all constitute significent sources of technical risk
and indicate that the system is software intensive.

Software that Integrates Several Systems

Many systems denend crucially on the capability to
copmunicate and interoperate with related systems. The area of
communications interfaces demands special asttention due to the
fact that, with advances in technology, these capabilities are
primarily embedded in software. Communicstions interfaces can
be standard, Off-the-Shelf (OTS), or custom built. Experience
with standard interfaces which have s specified predetermined
protocol make their use low risk, At the othe:r end of the
spectrum are custom built interfaces and the high risks
sgssociated with sattemptes to define communications protocols that.
link multiple components or systeus which are themselves in the
process of being defined. In between these two axtremes lie the
OTS interfaces. System development risk is elevated when it is
necessary to tailor OTS interfaces for the task at hand.

Identifying Critical Functions

A criticel aspect of carrying out an assessment of
technical risk is relating system functions and the softwvare
components which carry out those functions. The identification
of these functions will form the foundation upon which the
software test program will be built. The mizsion/function
matrix, which lists the mission goals and objectives and relates
them to system functions is a useful tool for identifying the
critical functions implemented in software. Figure 2.1-2
represents a mission/functicn matrix for a battle management
system containing computer hardware (H) and software (S)
components. In this figure, an S signifies that the
corresponding function will be implemented in software; an H
indicates that the function will be implemented in hardware; and
an S/H represents the intent to combine software and hardware to
implement the function. Knowing which functions are composed of
softvare allows the specification of software goals and
thresholds, and the identification of associated software test
issues. Plans for software testing, conduct, and evaluation
revolve around these issues.

(/s

H/S

XIHLVN NOLLONNS/NOISSIN V :Z—1°C NI

SININDIS MIN 3ANTIONI OL M/S SNILSIK3 AJION "+
WIALSASENS 3AISNILNI M/S OL 3FOVId3LNI ¢
JUVMLIOS SIHIND3IY NOLLONNY T

LNINAOTIIA HO4 M/H L308VL MIN — JHVMIJOS ONULLSIXI AJIQON 1

S3ION
JOULNOD ANVINWOD

NYINNH Y30NN

#)s S139uvi OL SNOJV3M
. NOISSY #® SL3SSsV
J1LLVE FOVNVAH

(c'2)s SNOLLVOINNNINOD
JINO¥1O3T13 1NO AMMVD

NOILYNiLS3(OL
NOLLO3YIG %® NOLLISOd
V8010 3ININY3E13d

SIUNSVINYILNNOD
JINOYLOT 14

H H/(Z'1)S Z°1)S S 40 30ON3S3¥d 3HL
/@) HAZ') H/(2) NI SLIONVL MOVAL

® ‘AJUK3QN 31vO0T

NOLLYOIAVN

SNOLLYOINAINANOCD OSNDIOVHL NOLLYOLISSYTO NOILISINOJV S3ALLDO3r80
NOISSIN

SNOILONNJ

PSS~ VR F N VIl WS BRES e

VN VO GO e

- . S ahim a. L

Chapter 2: Risk Ascessment

The success of a teat prograa relies on the evaluator's
sability teo interpret test results at any point ian the
scquisition process in terms of system functions and =mission
objectives. It this is to be feasible, & complate tracing of
mission objectives to system functions to hardware/software
components to test cases must exist. The aission/famction
matrizx is the first element of a chain of incressingly detsiled
specificstions.

2.2 Ags28sing the Risks of Software Implemented Functions

Evaluatioas of major systems prior to deployment are
concerned with determining the systems®' operationnal
effectiveness and suitability., Therefore, system acquisicion
rigsks are thecse of not satisfying effectiveness and suitabilicy
requirements. At the software level, thiv translates into the
risks associited with failing to satisfy functional or gquality
requirements. This section will provide definitions of system
operational effectiveness and suitability and will trace these
definitions to system and software functional, performance, and
quality requirements. The remasinde: of the section will discuss
the risks associated with the achievement of operational
effectiveness and cuitability goals when the system funrctions
are implemented in software.

DoD 5000.2-M-1, Test and Evaluation Master Plan Guidelines,
defines operational effectiveness and gsuitability as follows:

Operational Effectiveness. The overall degree of mission
accoxplishment of a sysestem wher used by representative
personnel in the <nvironment planned or expected for
opeéerationsl emplcyment of the system consgidering
orgsanization £ Joctrinme, tactiecs, survivability,
vulnerability, arnd threat (including countermeessures and
niclear threats).

Opargtional Suitsbility. The degree to which a system can
he satisfactorily placed in £i21¢d use, with consideration
givez to aveiladbility, cconpatibility, transportability,
interoperability, reliability, wartime usage rates,
maintainavility, safrty, human factors, manpower
supportability, logistic supportability, documentation, and
training requi -ements.

15

L» Ry " T T P

A g - Sbbat
e A e
a_ ool o sl

Chapter 2: Risk Assessment

Relating Systeas Engineering snd Software Developament

The. achievement of operational effectiveness goals is
dependent upon the specification and satisfaction of appropriate
system and gsoftware, functional and performance requirements.
The system engineering process is concerned with specifying
system requirements, analyzing and refining those requirements,
and finally, eallocating theu to subsystems and lower level
components. These components are categorisad in tezms of their
implemcntation medium: hardware or software. Once the
requirecents are assigned to components, the component
devalopaent activities follow different tracks which are defined
by military and DoD standards. For software, the prinmcipal
standard that is applied 4z DoD-8TD~2167, the Defense System
Software Development Standard. This standard is required for
use by all Services for systems which contain mission critical
software, DoD-STD-2167 is based on the assumption thatr the
system engineering process will produce a System/Segment
Specification (SSS) and, as a minimum, a draft Software
Requiremeunts Specificstion (SRS) as a starting point for the
softvare development process.

Tracing Operational System Requirements

The system functional and performance rTequirements
specified in the SSS are designed to satisfy mission essential
operational requirements and, therefore, trace directly to the
DoD 5000.3-M-1 definition of operational effectiveness.
Detailed software functional and performance requirements,
specified in the SRS, support the system functions which have
specified operational effectiveness requirements.

Quality Factor Requirements

Quality factors describe attributes of the system and the
software that are required by the operational and technical
objectives. Accompanying DoD-STD-2167 is a set of data item
descriptions (DIDs) which define the contents and format of all
deliverable documentation, including the SSS and the SRS. The
SSS DID, DI-CMAN-80008, defines the contents of a paragraph for
the specification of quality factor requirements. This DID
provides for the inclusion of the following system level quality
characteristics: availability, portabilirty, reliability,
maintainability, and flexibility and expansion. All of these,
except flexibility and expansion which are actually aspectc of
maintainability, trace directly teo the Dol 5000.3-M-1 definition
of operational suitability,

re

Chapter 2: Risk Assessaent

The SRS DID, DI-MCCR-80025, also specifies required
contents for 2 quality factors parsgraph that is td include
requirements for the following softwvare quality charscteristicsr
portability, reliability, maintainadbilicty, flexidbiliry,
usability, interoperability, correctness, efficiency, integrity,
testability, and reusabilicy.

In Table 2.2-1, the Qquaiity characteristics described above
are listed. The X's indicate which of the documents (i.e., the
LoD 5000.3-M-1 definition of operational guitability, the SSS
quality factors paragraph, or the SRS quality factors paraguaph)
reference «ach quality characteristic. This table can be urad
to rapidly distinguish those characteristics that originate in
the system level definition of operational suitability £froa
those that are primarily software level conceras.

Risk Drivers for Effectiveness and Suitability

The primary risks eassociated with the achievement of rhe
operational software's effectiveness goals are determined by the
maturity of the functional area. These risks are naturally
inherited by the software development. If the functions being
implemented in software have been implemented before, then
ignoring other factors, the current software development should
be low risk. If the functions have not been previously
implemented in either hardware or software, the expected risk of
the software implementation is magnified since the definition of
requirements and design cannot build on past experience. In
this instance, the likelihood of false starts and dead ends
increases significantly. These risgsks arise more frequently in
nev weapon systems due to the rapid growth in operational
effectiveness requirements. These include requirements for
increasing capacity as well as those derived from the necessity
to countsr more complex threats, For example, the nuamber of
sinultaneocus radar tracks required to be identified and stored
has increased by an order of magnitude with each new generation
of air defense systems. This has in turn become a significant
risk driver for these systems.

The risks associated with the achievement of operational
suitability goals are magnified by the failure to support the
specification and measurement of progress with respect to
software quality requirements. Quality requirements can be
allocated to hardware and software according to 8 method similar
to that used to assign functional requirements to hardware amnd
software, but not without a8 consistent set of basic definitions.
Many of the currently advocated definitions for the software
quality factors are only remotely related to the system level
definitions.

17

cam MM A,“-M,-m_w

Chapter 2: Risk Assessment

- A P D . U WD G G Y G S G Gn O R YD OB G S U G b S G WA U b U5 G R S OIS D U i Ghn . UTR O U O S U W GRS G S O Oh U G U Gn e

H t Operational : Quality Factors @
t Quality Characteristics $ Suitabdbility teccececacccnccnnsy
t t Definition ¢ 888 t 8RS 3
: availabilicy t X : X H H
‘ --_-_---'----------l‘--------' L X X X% & X 3 ¥ _F ¥ & X ¥ X X L 1 X L T X $ L T X ¥ 1 1 1} J :
t compatibilicy H P 4 s t 3
i correccuness H $: X H
: AR A GG R G G T IR W O W - s . . o ek e z - e e @S T an T W S W E ah , L X3 2 1 ¥ X % 3 : ----u---:
t documentatiocn $ X H H H
z - Gt A e G e S TS e D - :------—-—-u--: ------- -: -------- ‘
t efficiency H] H X 3
e e e b LD Lt L e (m——————— - ————— H
¢t human factors H X : H $
:t usabilicy : $: X :
jm————e—a—- e e —e——— fm——————— mmm————— :
¢ integrity : : : X H
= et r e — e e — e ——- e —c e —ae——— jm——————— e ———— :
¢t interoperability : X : : X t
{—-————e—e—— e es e ce e ——————— {m————— ——ee——— {m——————— jem—————— H
¢ logistic supportability t X : $ t
! maintainability : X $ X : X s
: flexibility H] X : X :
¢ expandabilicy H H X ! H
= rme e e e —r———————— e ————— {m~—————— e ————-— :
! manpower supportability : X : :

e e e e — e ————— e e —————— {m—————— rlm———————1
¢ reliabilitcy H X : X : X :
=t arc s —————— e —————— {m——————— tm—m—————— :
¢ reugability : t H X t
: safety : X : : s
¢ testability : ; ; X :
: training requirements : X s s :
¢t transportability : X : t :
: portability : : X : X :
! wartime usage rates : X : s :

e e G B WS SR W @ T G T W D S @S G W S W D W D G Gn D S G e W WD G I M W I G Gk G G WD G G SER G W T G b ek Gmn A R G

Teble 2.2-1: Relationship between Operational Suitability
Definition and Syetem/Software Quality Factors

18

v

-

it o, S an
—am A ol Ahe o as . e . -l . . e adhan . e e

Chapter 2t Risk Assessaent

Extreme requirements in such areas as reliadility often
necessitate the use of nev algorithms and design techniques.
Stringent operational suitability requirements for functions
that are implemented in software are very high risk.

Finally, the software engineering technology being employed
and its implementation in the selected support software can
itself be a risk driver for the system software. The compiler
is probadbly the most critical piece of support software used on
a program. If the compilation process results in either
incorrect or inefficient code, the operational software may not
satisfy operational effectiveness and suitadility requiresments.
Another kind of support software is automated software testing
tools that provide assurance of correct operational software
implementation., An error in such a tool or its underlying
theory could mask an error in the operstional software. Related
risks may arise from seemingly unrelated factors. Suppose that
an automated tool is used during the development process to
perform requirements analysis including tracing the requirements
to design and igplementation components, and ensuring
con:lstency between all interfaces. If the tool is proprietary
to the developing organization and not available during the
maintenance of the operational software, the risks associated
with the support of that software as it evolves through its
useful lifetime are increased.

The risks arising from software engineering methodologies
or techniques, especially their impact on the operational
software's effectiveness and suitability must be examined. When
the technology is presented in the form of an automated tool,
that tool should have been subjected to an evaluation process to
?nsureafhat its application will, in fact, provide a net benefit

E&V 84].

19

a. ol Ae e e . aade. . e A _— RPN N PR S U S S

.

e Aa & e A ash oa

PURPN SO,

CHAPTER 3

OPERATIONAL AND TECHNICAL CHARACTERISTICS

Whether or not a system can satisfy a set of user needs and
expectations is the major issue to be resolved by T&E. Required
characterigtics are the key indicators of a system's achievement
of required capabilities. There are two types of required
characteristics that are relevart: operational and technical.
Accurate estimation of the operationel characteristics allows
the tester to predict the extent to which the final system will
satisfy user needs and expectations. Determining the technical
characteristics indicates the level of engineering quality in
the system. In short, assessing technical characteristics
reveals how well the system is being built, while the
operational characteristics are used to determine whether the
right system is being built,

A basic and fundamental activity of the tester is
participating inm the determination of the required
characteristics of the system. System level requirements must
be formulated to provide clear definitions of the required
characteristi-s. This implies, for example, that requirements
be testable; that is, there should be a set of characteristics
associated with the requirements that are capable of being
estimated by testing. Furthermore, threshold values must be
established to determine minimum acceptable levels of
achievement of required characteristics. Questioning whether or
not the characteristics of the completed system will exceed
threshold values gives rise to critical T&E issues to be
resolved by testing. The effectiveness of the T&E program in
establishing the overall worth of a system is often determined
by how well this requirements setting process is carried out.

When software implements critical functions or otherwise
provides &8 significant source of risk in the system, the
contribution of the software to the required characteristics

becomes a major factor in determining system worth. The
previous chapter discussed in general terms the risks that are
introduced by the presence of software in the system. This

chapter will provide a more detailed treatment of the process of
identifying thresholds for the software's required contribution
to the system, identifying associated T&E issues, and measuring
progress in the context of the system acquisition.

21

Chapter 3: Operational and Technical Characteristics

»”
- A

3.1 Determining Software Contribution to Required
Characteristics

System requirements and the associated required operational
characteristics are derived from the users' mission needs. The
system requirements and engineering design parameters determine
required technical charscteristics. As & matter of engineering
practice, the system~level requirements will be decomposed and
allocated to subsystems, their functions, and ultimately to the
system components. In order to be complete, this allocation
gshould include both hardware and software components. At the
system level, the test program is jeopardized by a lack of
vell-defined requirements. The same is true at the software
level.

The allocation of system requirements begins at the most
general levels in the decision documents and agreements that are
used to manage the sBystem acquisition. The principal document
that drives the test program for a major system is the Test and
Evaluation Master Plan (TEMP). Its use is directed by DoDD
5000.3, Test and Evaluation, and its format is specified in DoD
5000.3~-M-1. It ig within the TEMP that the system's operational
and technical characteristics are delineated and related to
specific test issues and objectives. When software is
responsible for achieving the system's objectives, its
contribution to the system operational amd technical
characteristics should also be evident in the TEMP.

DoD 5000.3-M-1 defines required operational and technical
characteristics as follows:

Required Operational Characteristics. Qualitative and
quantitative system parameters approved by the user that
are primary indicators of a system's capability to
accomplish its mission (operational effectiveress) and to
be supported (operational suitability).

Required Technical Characteristics. Quantitative system
parameters approved by the DoD Component that are selected
as primary indicators of technicel achievement of
engineering thresholds. These might not be direct measures
of, but should alweys relate to, & system's capability to
perform its required mission function and to be supported.

22

Chapter 3: Operational and Technical Characteristics

Testability is a major concern when defining required
software characteristics. Requirements that make perfect sense
to software developers or even system end-users may not be

susceptible to measurement or testing. For example, a
characteristic such as "...the effort needed to perform..." is
not testable in any obvious way. Such a definition leaves

unresolved the questions of how effort is to be measured, under
what conditione, and exactly whose effort is being measured. It
is usually easy to rephrase snch definitions as follows: "...the
probability that & typical user will, under specified
conditions, successfully perform..." In this definition the
conditions of the test are more or less clearly defined (typical.
ugers and specified conditions) and the 'measurement criteria are
explicit (a probability estimate derived from the statistical
analysis of test data and events). In situgtions where more
qualitative characteristics are used, the exact concept of
probabilities canm be replaced by less exact measurement
criteria. For example, many measurements can be formulated to
determine the extent to which a set of outcomes satisfies a
previously defined list of criterisa.
‘ !

Thresholds define the minimnm acceptable system performance
required to successfully ueoxecute a mission. Despite their
negative connotation (developers and users prefer to view the
system from a more optimisctic perspective, usually in terms of
goals), threshold values 4re very importent to the T&E process.
In practice, goals can be sacrificed in the face of decreased
budgets, shortened schedules, or unanticipated technical
barriers. Thresholds, ofi the other hand cannot be negotiated
awvay. Falling below an agreed upon threshold value indicates
that one or more mission: cbjectives will be impaired. Failure
to meet or exceed a8 threshold for & required characteristic
indicates a serious deficiency in the system.

DoD 5000.3-M-1 defines & threshold as follows:

Threshold. A minimum level of performance required at a
point in a system's life cycle such that the threshold at
maturity equals the requirement. Achievement of the
threshold should. support e reasonable prediction that the
system requirement will be met at maturity.

23

.Chapter 3: Operational and Technical Characteristics

The identification of threshold values is an integral part
of the process of setting overall system requirements. A
by-product of this process is the establishment of thresholds
for all hardware and software components that affect critical
system capabilities. To the meaximum extent posesgible, the
requirements should "flow"™ from the system as & whole to the
system components. A system acquigition is the end result of
identifying 8 user need to counter a threat and translating that
need statement into & set of mission objectives. However, as
the systenm matures during engineering development and
production, it may deviate in both capability and quality from
what was originally planned. By defining the expected status of
the system's maturity at key points in the development process,
and comparing the observed maturity of the sgystem with the
predefined expectations, deviations can be identified and
corrected early.

The requirements definition process results in thresholds
for each of the system's required operational and technical
characteristics. System requirements are implemented through
some medium, usually either hardware or software. Thus, the
thresholds set for each required characteristic must be
appropriately translated into a meaningful requirement for the
selected medium., If the capability of interest is implemented
in hardware, the associated thresholds egre <«ranslated into
thresholds for required hardware charscteristics. If the
‘primary implementation medium' is software, suitable thresholds
for required software characteristics must be defined.

Suitable thresholds for required software characteristics
must be the result of a comprehensive decomposition and
@allocation program which encompasses the operational
effectiveness and suitability characteristics, as well as the
technical characteristics, One such approach is outlined below.

24

P

>

Chapter 3: Operational and Technical Characteristics

Operational Effectiveness Characteristics

These characteristics are specifically related to mission
cbjectives and are usually stated in terms of required system
functions or capabilities. In many cases, individual system
functions can be clearly essociated with software components or
subsystenms. When this is feasible, the asppropriate thresholds
for required software operational effectiveness characterigtics
are inherited from the system level specification. In more
complex cases, functional system capabilities define data
processing "threads"™ that cannot be easily associated with a
single software component. In these instances, & formal
approach to allocating effectiveness characteristics and
thresholds to specified software components should be wused.
Acceptable spproaches involve defining data processing
requirements using 8 model of the functional behavior, relating
processing threads to overall software requirements, &and
carrying out the allocation steps in a systematic way within the
model. Many of these software requirements definition

method?logies are in common and widespread use [Alf 77, Ros 77,
Tei 77].

" Operational Suitability Characteristics

Table 2.2-1 provides a mapping of the DoD 5000.3-M-1
operational suitability . factors to system and software 1level
quality factors. This cen be used as 8 starting point when
determining required software operational suitability

characteristics. Each operational suitability characteristic
approved by the user is 8 potential required software
characteristic. In cases where software terminology differs

from DoD 5000.3-M-1 termirology, Table 2.,2-1 and the definitions
provided in Table 3.1~1 can be used to aid the threshold setting
process. Definitions sre algso provided for operational

‘suaitability characterigtics that are firet introduced as

software quality factors. Bach of these should be considered
for relevance on a system by system basis.

Once the appropriate software operational suitability
characteristics or quality factors are identified, the threshold
setting process is initiated. It may not be possible to specify
or measure the achievement of quantitative thresholds for these
software characteristics. In such ceses, qualitative or
comparative thresholds may suffice. In any event, just as in
the setting of thresholds for effectiveness characteristics,
software thresholds should be inherited from the system 1level
thresholds. As descripec¢ sbove, & number ol widely used forma:l
software requirements setting methodologies are available to aid
in the allocetion of threshold requirements.

25

Chapter 3:

Availability

Integrity

Interoperability

Maintainability

Reliability

Usability

Table 3.1-1: Quality Factors for Operational Characteristics

Operational and Technical Characterigtics

Availadbility is the probability that the
systen will be in an operable and
committable state at the start of s
mission when the migsion is called for

at an unknown {random) time.

Integrity is the probability that the
system will perform without failure and
will protect the geystem and data from

unsuthorized access.

exchanged.

amount of time.

Reliability is the probability that the
system will perform as intended under
stated conditions for a specified period

of time.

Usability is the probability that users
can operate the system under specified
conditions without user error given they

have received specified training.

26

Interoperability is the probability that
two or more systems ca&n exchange
information under stated conditions and
uge the information that has been

Maintainahility'is the probability fhat
the system can be restored to a
gepecified condition within a specified

‘ 1

i

S bt |
.

Chapter 3: Operational and Technical Characteristics

Tachnical Characteristics

Definitions for generic software technical characteristics
that are also commonly referred to as software quality factors
are provided in Table 3.1-2., As with the software operational
suitability characteristics, these may or may not be direct
descendants of system level characteristics. In any case, they
should be considered as 8 starting point end examined for
inclugion on & system by system basis. Once again the
difficulties sssociateéd with specifying and measuring
achievement of quantitative thresholds arise. Many times the
simplest and most effective approach is to define the evaluation
criteria for a given characteristic as &8 list of testable
properties that, taken together, satisfy a more general software
requirement., Quantitative thresholds can then be identified by
referring to the extent to which the listed properties have been
satisfied (e.g.,"... the system must satisfy 85% of the
criteria..."™ or ".,..the current system must satisfy at least the
criteria satigsfied by the system it is replacing...").

As a general rule, common engineering practice should
prevail in requirements allocation. However, software
technology does not support quantitative specification and
measurement to the same extent as hardware technology. The lack
of a set of software "laws of physics™ has resulted in the
proposal of many controversial techniques for software quality

prediction und mesasurement. When considering the use of
software technology, it must always be remembered that there is
no magiec, Suggested techniques that are not accompanied by

convincing evidence of effectiveness should be avoided.

3.2 Identifying Critical Software Test and Evaluation Issues

Cnce thresholds have been esteblished for required software
operational and technical characteristics, the resulting
critical issues must be identified. These issues are simply the
specific questions that must be answered by a test in order to
assess .the value of one or more characteristics. It is these
critical issues that provide the basis for the selection of test
ocbjectives and appropriasate testing methodologies. The
identification of critical issues allows the concentration of
test resources on areas where the most benefit cen be realized.
As stated above, not all required characteristics give rise tc
critical issues. If this were the case, the critical issues
could not be used to prioritize test objectives and guide the
development of an effective test program.

c.

27

———

Chapter 3: Operational and Technical Characteristics

Correctness

Efficiency

Expandability

Flexibility

Por .bility

ReusaL.lity

Correctness is the extent to which the

system conforms to its specifications
and standards.

Efficiency is the ratio of actual
utilization of the system resources to
optimum utilization. ‘

Expandability is the extent to which the
system capability or performance can be
increased by enhancing curremnt functions
or adding new functioms.

Flexibility is the extent to which
system purpose, functions, or data can

be changed to satisfy other specified
requirements.

Portability is the extent to which
system components c¢an be transferred
from one software system environment to
another,

Reusability is the extent to which
system components can be used in other
specified applirations.

Testability Testebility is the extent to which the
specified systen operetion and
performance determine the conditions &and
criteria for tests.

Table 3.1-2: Quality Factors for Technical Characteristics

28

Chapter 3: Operational and Technical Characteristics

DoD 5000.3-M-1 defines critical issues as follows:

Critical Issues. Those questions relating to & systenm's
operational, technical, support or other capability, that
mugt be ansvered before the system's overall worth can be
estimated/evaluated and that are of primary impcrtancae to
the decision authority in allowing the system to advance to
the next acquisition phase.

Decigions made concerning the rigor and thoroughness of the
test program ag implemented for individual charscteristics are
based upon the inherent risks associated with achieving the
specified thresholds. The rigks of interest during the
identification of critical issues are the same risks discussed
in Chapter 2: technical, schedule, budget, and decision. In
fact, the role of decision rigk in the determination of critical
issues is apparent in the DoD 5000.3-M-1 definition.

In practice, the critical T&E issues will be formulated by
analyzing the required software characteristic that is being
demonstrated, the demonstrsted maturity of the system at that
point in time, and the extemnt to which prior issues have been
resolved. At times, the critical issues revolve around a
clearly defined question such as whether or not & certain
program can sgervice all resource demands within a given interval
of time. At other times, the critical issues involve complex
interactions of components and can only be attacked indirectly.

The following paragraphs will outline consideratioans that
should be taken into acc nt when identifying critical software
T&E issues that might be associated with operational suitability
and technical characteristics. These quegtions tend to be more
generic and susceptible to genersl discussion than the
corresponding issues for operational effectiveness.
Effectiveness issues tend to involve questioning specific
aspects of system fumnction. Neverthelesgs, the questions
formulated below should be a8 model for all types of critical T&E
issues.

The process of determining the specific gquestions of
interest with respect to a given characteristic is one of
stepwise refinement of the relevant requirements. This process
will be illustrated using the operational characteristic of
interoperability.

29

Chapter 3: Operstional and Technical Characteristics

Exaaple: Interoperabdbility

Suppose that Systea X is being acquired and that one of its
ceritical operational characteristics 4is that it be capeble of
interoperating with three existing systems: System A, System B,
and Systes C. Further suppose that System X is required to
interoperate with System A via a common data base coupled with
coapatible network protocols. Refinement of the requirement for
a common data base mey uncover a requirement that the dats base
be sble to service concurrent requests correctly (e.g., without
scrambling concurrent transactions, losing requests for service,
or unfairly locking requests from service). Refinement of the
requirement for compatible network protocols may surface a
requirement for compliance with the International Standards
Organizstion's Open Systems Interconnection (ISO/0SI) Model.
Further refinement of the requirements for concurrency handling
and support of the ISO/NSI Model could be expected to uncover
additional, more detailed requirements. This stepwige
refinenent of the interoperability requirements is depicted in
Figure 3.2-1, The criteria that determine intexoperability
betwveen System X and System B, or System X and System C, could
be entiraly different than that used for System X when paired
with System A.

The potential critical issues or questions derived from the
interoperability requirements deacribed above for System X and
System A may include:

Is the common date bese employed by System X and System A
capable of handling concurrent requests?

Do the network protocols employed by System X and System A
adhere to the IS0/0SI Model?

What perccnta;o of the time are both the common data base
and the network available (i.e., what percentage of the
time can System X and System A be expected to be capable of
interopersating)?

Similar questiors would arise concerning the capability of
System X to interoperate with System B and fystem C,
respectively. Any judgement of the worth of System X with
respect to its operational characteristic of interoperability
would require answers to these questions. Thus it car be seern
that as system requirements are refined, each additional
requirement may pose &8 new issue for investigation. These
issues d¢ not become critical issues, however, unless they 1iie
on sn important decision path.

30

e metan & . ol heinr . e . oa ol . . ol ed FPSIIES VIO PN DS Ny Wi vS SRS

ININIHINDIY ALMIBVHYIHOYILINI NV *1—2°¢ 3¥NOLd

9JIAISS 10} 90JAI98 1O} SUO}ODEUDI)

sjsenbau 3o0j sjsenba. JUSLINDLIOD
Apiojun 980| 9|quIDJIOS
U oQ jou o(Jou o]

/ AN o

_

jopow |SO/0SI
ypum ALjdwoo
0} juswesnbey

D

$/020}04d

yomjau 9|qpodwiod
oADY 0} judwesinbey

T

™ _ .

s)}senbas jJuaLINdUOL
9OJAI98 0} 98D(q DOp
8y} J4oj juswelinba,y

.

_wuon D}OP UOWILOD L
@Joys 0} jusweainbay

_]

]

e

|

3 g v
NIALSAS WILSAS N3LSAS
yum 9osedossul | |yym ayosedossyy) yum nosedosdyu)
03 Juswesinbey 0} juswainbey 0} judWweLnboy
S D AN

T

/1

N

X

wewelinbey Auqoiedousiuj .

N3LSAS

AR, A o .

- -

-—am M o0, e e . ol . . ol PSRy VG peag . il

Chapter 3: Op.tlt}onal and Technical Characteristics

Operational Suitadbility Issues

The remainder of this section will consist of typical
issues or questions that may asrise wvhen the overational
suitability charscteristics of Section 3.1 are importamt to the
system being acquired.

Availabilitcy

Software availability measures the likelihood that software
implemented functions will be operational in times of need.
There are two principsl design mechanisms for ensuring
availability: fault immunity and failure recovery. Faul:
iumunity in a system guarantees that a function will bde
available by ruling out faults -- events that would cause the
function to become inoperable. Failure recovery contributes to
svailability by eusuring that the software can transition from
inoperable to operable states (after, for example, an
operational failure has occurred) within specified time
constraints. Among the most important availability detractors
sare the faults and failures that may occur in components outside
the direct control of software designers. Contamination by
hardware faults or failures in software systems with which the
given software must interoperate is common and highly available
software designs must provide adequate insulation from these
sources. Another common detractor is the protocol that isg
required to bring the software to operational status (i.e., the
procedures used to restart or re-initialize the system when
failure recovery mechanisms are not sufficient). Typical
software availability issues may include:

Do software functions remain availablé'vhen presented with
a closely spaced series of out-of-range input values?

1f 8 software failure occurs, are its effects limited to
the portion of the code containing the fault? Will the
software recover to a failure-free state?

Do software functions remain available in the ﬁresence of
specified hardware faults?

How are highly aveilable software functions insulated from
operating system failures?

Do "warm" or "cold" start protocols &allow tramsitiom to
full operational status within specified tolerances?

32

Chapter 3: Operational and Technical Characteristics

Integrity

Integrity measures the likelihood that the software and
associsted data are protected froam unwanted access and
manipulation. The widespread use of computer technology has
provided pnew opportunities for unsuthorised access of dasta and
has thereby increased the risk of compromise of c¢lassified
information. The principal design mechanisms for ensuring
integrity include access control and data protectioa. Access
control guarantees that system integrity is maintsined by only
allowing users to view authorized data and perform approved
operations on that data. Data protection conmtributes to
integrity by ensuring that the date is only received ¢from
expected sources, can only be interpreted by intended recipients
and ig, in fact, valid and consistent. Among the most important
integrity detractors sre trusted system components and
multiplexed resources. System components that are trusted
without investigation present, by definmition, opportunities for
compromise. Multiplexing -- or any sharing of resources =~-

allows multiple potential avenues for entry into the system.

Another common detractor from system integrity is data

corruption (i.e., the possgsibility that data may be
unintentionally damaged or destroyed). Typical integrity issues
nay include:

Does the system password nanagement protocol reduce the
possibility of system access by unauthorized persons?

Is data "time-stamped" so that it can be validated prior to
processing?

Does the software provide for controlled access to data and
functionse when requests can originste from multiple
external sources?

Ras evidence of trustworthiness been examined for those
gystem components that have & trusted status?

Is data checked prior to storage or processing to make sure

that it has not been altered by transmission over a noisy
communications channel?

33

ol R i e . A o . e s e o o el it Ste PV W

-t am - .

Chapter 3: Operational and Technical Characteristics

Maintainability

Software mainteinability measures the likelihood that the
software can be placed in an operational state when needed.
This includes both the restoration of an inoperadble function or
capability (ea.g., by pushing a "restart®™ button) and
re-engineering of the software (e.g., to fix an error or to add
a new capability), as appropriate. Software maintainability is
greatly influecced by the software design and development
process, and the capabilities existing in the maintenance depot.
Maintainability is enhanced by software designs that bduild
restore/restart capabilities into the systenm. The ease with
which the softvare can be re-engineered is influenced by the
original software development procesa. Software that is built
using modern software engineering techniques lends itself to
esasier modification. Usually this kind of software maintenance
is carried out at a Software Support Agency (SSA) facility. The
SSA contributes to the software's maintsinability to the extent
that it supplies an adequate support environment and qualified
personnel. Invariably, the maintainability of the software is
limited by the operational environment's diztance from the SSA
and the logistic downtime that is required to recompile or
restart the system. When on-gite support is unaveailable for the
softvare, time delays associasted with electronic communications
or the physical tranmsport of magnetic tapes place a lower bound
on the minimum amount of time necesssary to complete =a
maintenance action requiring software modification. - Typical
software maintainability issues may include:

Does the system include capabilities (e.g., cold and warm
start functions) such that it can be restored to an
operational condition from an inoperable state in the
required amount of time?

Has the software been built using modular design
techniques, accepted coding standards, aand modern
documentation practices?

Does the raintenance environment include the necessary
compilation systems, testing tools, and documentation/
management capabilities to allow software changes to be
accomplished within the meaintainability time constraints?

Do the softwvare maintenance personnel have the proper
training with respect to the application, software
engineering, and the implementation language to allow the
location and correction of an error within available time?

Can the modified software be delivered to the operational
system to allow its installation in the required amount of
time?

If necessary, can the system be restored tc an operationesl
state without teking it offline?

34

A-AAA.-.‘.‘A,‘_AAA—M.‘

b etiliofho,

C— m e . &

v - ww———

- —w-
R R PRR

et

Chapter 3: Operational and Technical Characteristics

Reliability

A common error made when Jefining system reliability
requirements is that of £failing to consider the software's

impact. If software is responsible for providing critical
system functions, then the reliability of the software plays an
importent role in the overall system reliability. Software

reliability measures the likelihood that software will perform
e intended when called upon. The primary method of ensuring
reliability dis that of ensuring correctness of the software.
Though the two characteristics are not equivalent, correctness
ig a great contributor to software reliability. Detractors from
softwarze reliability include the occurrence of any failures that
affec: software performance. This includes failures originating
in the components of interest, other software components, and
the hardware., As is the case with availability, contamination
by herdware faults or feilures in other portions of the software
ig common, If software is to satisfy extreme reliability
requirements, its design must provide adequate insulation from
thece sources, Typical softwere reliability issues may include:

Has every software instruction been successfully exercised
by some test case?

If a software failure occurs, are its effects limited to
the portion of the code containing the fault?

Does the software perform as intended in the presence of
operating system failures? ‘

Does the software perform as intended in the presence of
specified hardware faults?

Usability

Usability measures the likelihood that users can operate
the system without error after specified treaining. Three
principal determinants of system usability include the human
factors considerations built into the software, the design of
the hardware, and the qualities of the user documentation.
Software human factors concentrate on the timely and consistent
presentation of understandable information. Hardware designs
must consider ergonomics and user gkill levels. User
documentatior should maximize the ease of informetion location.
The greatest detractor frcm systen usability is the environment
in which this characteristic is most critical ~- the operatiomnel
environment during extreme conditions. The stress introduced by
situations requiring the nomn-drill use of military systems
(e.g., engagement in battle) can reveal usability problems never
suspected during experiments and evaluations. Typical software
usability issues mey include:

35

Chapter 3: Operstional and Technical Characteristics

Do error messages guide the user through recovery
procedures when needed?

Is there a roadmap to guide the use of the system
documentation?

Does the system design minimize demands on the human user
during stressful conditions?

Technicul Issues

The process of refining requirements related to operational
suitebility characteristics to uncover software issues was
illustrated above, If the refinement process is allowed to
proceed to finer levels of detail, at some point the issues
uncovered actually relate to technical software characteristics.
An example of this 2lready exists above: one of the reliability
issues addressed the correctness of the software. Correctness
is one of the technical characteristics presented below, along
with its associated typical issues.

Correctness

Software correctness measures the extent to which the
software conforms to its specificationms. Thus, correctness is
enhanced by the absence of errors, and detracted from by the
presence of errors. Questions associated with the correctness
of a piece of software, therefore, revolve around the process of
determining correctness; in other words, testing. Typical
software correctness issues may include:

Has the software be=n subjected to tests designed to reveal
the presence of errors of specific types (e.g., computation
"rrrors, logic errors, data errors)?

Has the software been subjected to tests designed to
demonstrate that errors of specific types are not present?

36

Chapter 3: Operational and Technical Characteristics

Efficiency

Efficiency measures the extent to which system resour:e
utilization approaches optimum utilization. Reasl-time, embedded
systems are sometimes accompanied by extreme efficiency
requirements. For example, veight limitatioms may inhibit the
ability to extend processing resources 80 the efficient use of
available processors and memories is highly desgirable. There
are two principal contributors to the efficiency of a given
implementation: the efficiency of the algorithms employed and
the degree to which efficiency is supported by the
developrent/maintenance environment. Theoretical snalyses are
available for determining the minimum number of processing steps
required to implement solutionsg to basic mathematical or
engineering problems. Taking advantage of the results of this
field of study cam contribute sgignificantly to efficiency.
Efficiency is further enhanced by wutilizing support tools that
have themselves been optimized for the efficiency of the
resulting software. The primary detractor from application
efficiency is the overhead resident in the use of underlying
system functions. Every computer operation requires resources
-~ the careful design and selection of operators cam reduce
demands placed omn scarce commodities. Typical software
efficiency issues may include:

Does the software design employ basic utilities and data
man pulation algorithms that minimize the combined
utilization of scarce system resources (e.g., memory,
storage, throughput, I/O0 channels)?

Does the software support environment include optimized
code generators and timing/tuning tools?

Does the software implementation employ operating system

functions in &8 manner that minimizes the combined
utilization of scarce gystem resources?

37

Chapter 3: Operatioaal and Technical Characteristics

Expandability and Flexibility

The extended useful lifetimes of major systems developed
and fielded today necessitate the feasibility of modifying the
system capabilities as the usage environment or threat changes.
Expandability measures the extent to which these modificatiomns
can result in additional or enhanced system capabilities.
Flexibility measures the extent to which the system ceaen be
modified to accommodate changing requirements. Similar to
software maintainability, software expandability and flexibility
are greatly influenced by the software design and development
process, and the capabilities existing inm the support
environment. The use of modern software engineering techniques
and the availability of an adequate support environment
contribute to the expandability and flexibility of the software.
These characteristics are further enhanced by designs and
implementations that incorporate robust algorithms into the
system, Limits associated with hardware capabilities and user
workloads are the primary inhibitors of expandability and
flexibility. Typical software expandability and flexibility
igsues may include:

Was the software designed and implemented in a modular
fashion? Were progreamming standards that limit the impact
of changes enforced during the software development? :

Is necessary support software and documentation accessible?

Have basic system algorithms been designed to allow eas;
modification?

Can the hardware employed sustain the expected growth
through the addition of boards, peripherals, etc.?

Are users capable of operating the system to take advantage
of additional or changing functionality?

Portability

Portability measures the extent to which components can be
transferred to other systems. This characteristic is usually of
importance to software that is expected to satisfy the needs of
a variety of users who employ a variety of hardware suites, or
software that is expected to outlive its underlying hardware.
In general, the only contributor to a software component's
portability is its implementation. All other system interfaces
or dependencies detract from or inhibit portabilicy. These
include required system libraries, the operating system, the
implementation language, the hardware's instruction set
architecture, and the machine level representations. Thus,
typical software portability issues may include:

Are application interfaces consistent?

38

e

Chapter 3: Operational and Technical Characteristics

Do nacessary math libraries provide adequste sccuracy?

Have operating system dependencies been isolated and well
documented?

Is the software written in &8 portable subset of the
programming language?

Does the software use non-portable tests on collating
sequences or exception flags?

Does & specified series of functioms operate within the
required time constraints?

Reusability

Reusability measures the extent to which components can be
used in other applications. The amount of time, money, and
human rescuices required to develop software has focused
attention on the potential gains to be realized from employing,
or reusing, individual software components in multiple systems.
The reusebility of a software component is enhanced by the use
of modern software engineering techniques and robust algorithms,
as was the case for expandability and flexibility. Of special
and unique importance to the reusability of software is the
availability of "evidence of the component's behaviaor under a
variety of conditions and scenarioes. As expected, detractors
include all hardware or operating system dependencies. Typical
software reusability issues may include:

Has the componment been built to allow its extraction from
the remainder of the system? Is the software modular? Are
interfaces parameterized? Is separate compilation
supported?

Are test history information and results aveilable to
provide confidence that the software will perform as
intended in the new environment?

Have basic system algorithms been designed to allow easy
modification?

Have hardware and operating system dependencies been
isolated and well documented?

39

- Y Y ey

Chapter 3: Operational and Technical Characteristics

Testability

Testability measures the extent to which proper systenm
behavior can be determined. The primary factors that influence
the ability to test software are the specification of software
requirements, the organization of software components, and the
saveilability of appropriate data extraction and reduction tools,
Without traceable, consgsistent, and adequate softvare
requirements to determine if software behavior is acceptable,
the testing process is doomed. When the software components are
hierarchically organized and traceable to requirements, software
testing can follow a progressive process where each test builds
on the results of tests that have already been conducted and
analyzed. Building software to include instrumentation or hooks
further supports testability. Testability is inhibited by the
impact that the testing activity has on system behavior and the
increase in system size and complexity when test capabilities
are added. Typical software testability issues may include:

Is the expected behavior of the software (e.g., functional
operation and performance) described in an unambiguous
manner?

Can software components or subsystems be examined
independently for testing purposes?

Do capabilities exist to control software execution and
gather all data needed tc¢ determine software behavior?

What impact does the execution of test date extraction
routines have on the true software timing profile?

How bhave increases in the complexity of the software due to
the inclusion of instrumentation been accomuodeted by the
testing process?

The typical issues described above are intended to suggest
potential critical iscues. However, any decision concerning
criticality must be made on & system by system basis. Once
critical issues are identified, related test objectives are
defined and suitable test methodologies are selected as
described in Chapter 5. It should also be noted that critical
issues do not necessarily remein constant throughout the life of

2 system acquisition. Thresholds set for operational and
technical characteristics, &as well as their associated risks,
mey change. This topic will be addressed in the £following
section, '

40

Chapter 3: Operational and Technical Characteristics

3.2 Determining Software Specification and Demonstration
Milestones

The previous sections have explained the importance of
setting thresholds for the software operational and technical
characterigtics and have provided typical issues that may result
from those characteristics. This section will discuss the
acquisition cycle and the information available to support the
specification and evaluation of thresholds during selected
phases of that cycle. These concepts provide a context that can
be used to judge information received during am acquisition and
to ensure that expecta“ions of progress are realistic.

Figure 3.3-1 depicts the generation of a system as a cyclic
process which begins with the identification of an operational
threat from which mission essential operational requirements are
derived. A veriety of concepts may be envisioned for the
accompligshment of the mission objectives, but eventually, a
single conceptual system is selected and described by a set of
system requirements. These requirements are reflected in a
system specificaticn and then partitioned into functiomnal
capabilities for implementation in software and hardware. As
detailed requirements are further refined and amplified, designs
for individual software and hardware components emerge. As the
components are built, tested and integrated, a preproduction
system evolves and system development testing (DT) is performed.
Following successful completion of DT, the preproduction system
is subjected to opera.ional testing (OT). Finally, production
quality systems are built and deployed. The cycle begins again
as knowledge, gained from operational experience with the
system, is factored into plans for new systems that may be
developed to counter a future threat.

Another view of this process is presented in the Software
Maturity Matrix (See Figure 3.3-2). This matrix is a8 tool that
can be wutilized by decision makers when assessing software-
related information during the different phases of the
acquisition cycle. DoD 5000.3-M-1 defines a mature system as
follows:

Mature System. A system meeting the minimum essential DoD
Component-approved operatiomal, technical, and quantity
requirements baseline for full and complete fielding of a
weapons system. To be mature, the system must have
achieved its reliability thresholds and be fully maintained
and supported in accordance with the DoD Component's
maintenance concept.

Principal drivers that influence software maturity during a
system acguisition include the extent to which requirements are
known, experience with applying automation to similar
applicatioas, completeness of the software development effort,
and thte degree to which the software has been exercised, tested,
and perfected.

41

[N © vt IUNUEESY ——

SSII0Yd IMOAD V. SY NOLLISINDOV :1—£°¢ F4NO

(4@ ® d9ad)
SI¥odTd MATATE
NOTSAA TVOILIED

(aas) .
L0298 MAIATE NV ZAVNIRLTEEE

@ S1y0d3Y
m

S 9N11S31
Y WIHIHA0TIAID
NOTLVII4133dS TAVALIOS
H3LSAS any
: Y, s180d3 -
- : ONIESAL

: . :.lﬂ - IVNOLLV¥3dO

A \, /V r J S1¥043¥

m‘m.z JINIIY3dX3
LH3HAQ 430
[V

3L .
TYNOI VY340 Ko

Chapter 3: Operational and Technical Characteristics

The rows of the Software Maturity Matrix represent
diifering perspectives for observing the evolutionary nature of
softvare within a systes. The columns represent different
phases in time corresponding to the sequence of events vigible
to acquisition decision makers. Thus, by reading a single row,
& decision maker can determine whether or not the system is
progressing along the expected path, Similarly, examination of
a single column can reveal whether or not the system has reached
the expected level of maturity for the current phase.
Descriptions of each of the components of the matrix follow.

Acquigition Milestones

DoD 5000.,3-M~1 defines a milestone to be "a major
nanagement decision point in the overall acquisition process of
& major DoD system requiring Office of the Secretary of Defense
(0SD) and/or DoD Component program review". These decisions
include Milestone 0 which authorizes program initiation,
Milestone I which selects alternsative system concepts for
further investigation, Milestone II which represents an
intention to deploy the system selected for development, &and
Milestone III which is the production decision.

Acquisition Phases

" The total acquiaition-and deployment cycle is divided into
four acquisition phases:)

The Concept Exploration Phase is used to identify and
exanine various system and development concepts which will
satisfy the operational migsion requirements, including the
role of software within the systeus.

During the Demonstration and Validation Phase, system
requirements are validated and tne suitability of the
system for engineering development is demonstrated. In
addition, alternate approaches for allocating system
requirements t'oc hardware and software are investigated.

Full Scale Development Phase activities include designing,
implementing, testing and integrating the hardware and
software components into a total system.

Finally, the Production and Deployment Phase results in a

specified number of systems being placed in field use and
maintained until retirement.

44

- am A

Chapter 3: Operational and Technical Characteristics

System Foram/Information Availabdle

At any point in time, the system exists in some conceptual
or physical form. The available information varies as time
presents more opportunities for analyzing and modifying the
system concept.

During the Concept Exploration Phasse, the system is
embodied in the System Concept Paper (SCP) which describes
the acquisition strategy, including the identification of
concepts to be carried into the Demonstration and
Validation Phase, and reasons for elimination of other
concepts; and establishes thresholds to be met and raeviewed
at the next milestone.

During the Demonstration and Validation Phase, the system
exists in the Decision Coordinating Paper/Integrated
Program Summary (DCP/IPS) which supplements' system concept
slternatives and thresholds with planning for system life
cycle management. Although descriptions of alternative
concepts in the SCP of the Concept Exploration Phase may
include information related to each ccacept's utilization
of computer regources, the IPS ig the first document that
specifically requires the presentation of system computer
resource issues.

During the Full Scale Development Phease, the form of the
~gystem evolves from that of system requirements and
specifications into detailed hardware and software designs
vhich result in the production of an engineering prototype.
The engineering prototype, as well as each of its
components, is subjected to testing that is sufficient to
justify a production decision.

The system form during the Production and Deployment Phase
is that of a production quality system supplemented with
information concerning operational experience.,

Requirements Model

This row of the matrix summarizes the progression of the
system through the acquisition cycle. The system requirements
initially flow firom mission objectives during the Concept
Exploration Phase. Once a single concent has been selected
during the Demonstration and Validation Phase, the requirements
for the system to be developed can be specified. Full Sceale
Development encompasses the refinement of the systen
requirements %o a level of detail that allows the development
and integration of each individual component. The tse of the
system during Production and Deployment completes the cycle by
evaluatlng the system in an operational enviromnment with respect
to the mission goals and logistics strategy.

45

N SR Y W G GNPV Py VIS T S N WO v

Chapter 3: Operational and Technical Characteristics

Evaluation Scope/Basis for Evaluation

The primary aspects of the system which are examined for
the purpose of evaluation also vary with time.

During the Concept Exploration Phase, the considerations bdy
necessity center on mission objectives and the accurate
representation of the threat to be countered. 12 similar
systems have been developed, evaluations can be made with
respect to methods proven through operational deployment.

During the Demonstration and Validation Phise, evaluations
are expanded to consider the planned teclanical approach
with respect to complexities introduced into the system by
known consttraints., For resal-time systems, these
complexzities will very likely include the impact of timing
constraints on the softwvare portions of the system.

The Full Scale Development Phase results in an engineering
prototype wvhose technical characteristics can be thoroughly
tested and evaluated. In addition, operational
characteristics are tested to the maximum extent possgible.
The softwvare test program must be founded upon a
systematic, quantitative, and objective approach which is
employed in a progressive manner, This ensures that
information gained from early low-level tests is factored
into the design of higher-level tests, eventually building
to a software system evaluation prior to the testing of the
completely integrated engineering prototype of the system.
Confidence in evaluation results can be expressed in terms
of the extent and rigor of tegting.

The Production and Deployment Phase provides additional
ingsight into operational characteristics regarding
previously untestable interactions among system.and
software components and the operational environment.

Recommendations

Guiding principles for each of the acquisition phases
follow.

Efforts during the Concept Exploration Phase must be
concentrated on the determination of realistic thresholds
for required operational and technical characteristics
based upon available mission needs information.

During the Demonstration and Validation Phase, thresholds
must be updated based upon insight gained during the
validation of the requirements and experience with similar
systems. Thresholds must also be specified for software
characteristics based upon previously established limits
for system operational and technical characteristics.

46

- ‘_,;M_M,_,AA‘ e ' oo o osaihan Ko Sume. P VU WSRO

——m e

Chapter 3: Operational and Technical Characteristics

The Full Scale Development Phase nmust incorporate &
progressive and comprehensive software test program that
substantistes the achievement of specified thresholds for
all required characteristics.

The Production and Deployment Phase coffers the first
opportunity to evaluate the system's requirements and
performance in a true operational environment.
Requirements specified during the development of a systen
are predictions of an operational need. These predictions
must be updated based upon real need as observed during
systen deployment., At this point, tolerances can be
assigned to the thresholds, thereby providing a realistic
basis for the maintenance, modification, or replacement of
the system.

The Software Maturity Matrix canm be used to assess system
and software information that is reportced throughout the
acquisition process. For exzample, suppose that at the Milestone
I decision point it is reported that the software for the system
has a reliability of .98. According to the matrix, in general,
only information related to mission objectives is available at
this point in the process. Although reliability thresholds may
have been assigned, it is unlikely that the role of the software
in the system has been thoroughly investigated. It is even less
likely that any software has been developed and tested such that

‘an achieved reliability figure could be reported. On the other

hand, suppose that evidence revealing the expected operational
reliability of the software is not available at the Milestone
II1 decision point. If the software test program was properly
structured and executed, this information would be available.
In this case, a thorough review of the software test program may
be in order. By scanning the column of the matrix that
corresponds to the relevant time in a program's acquisition, the
context within which to judge software knowledge and status is
easily inferred.

A final point needs to be made concerning thresholds. The
definition provided by DoD 5000.3-M-1 specifically associates
thresholds with time. It embodies the concept that thresholds
change as the system development progresses. These changes are
based on the availability of additional information about
mission needs and the technical feasibility of specified
requirements. As the srystem evolves, the partitioning of
requirements into functional capabilities and the allocation of
responsibilities tc hardware and socftware may advance through
several itreracvions. Every systen development activity results
in information that must be reflected in the current thresholds
for required operational and technical characteristics, This
incorporation of new knowledge must be institutionalized in each
program's development strategy.

47

JYY

CRAPTER 4

MANAGEMENT AND SCHEDULES

Effective T&E requires a well-managed flow of information.
One component of this flow is vertical and connects developera,
users, and acquisition decision makers. Another component is
horizsontal and connects issues and organiszsations that may be
concerned with different aspects of the system. This chapter
outlines an approach to managing both types of informetion flow.
The important features of this approach include recognizing the
key participants in the software T&E process and the roles that
they have been given (e.g., through policy via DoDD 5000.3), and
assigning spheres of responsibility to each of the participants
to sccount for the major technical and programmatic risk
elements of the systenm. An essential aspect of such an
assignment is its focus on developing a realistic management
approach that makes organizational participants responsible for
T&E issues that they cam control, Another essential aspect of
this approach to software T&E is the maintenance of independence
in the program, that ig, utilizing the efforts of DT, OT,
Quality Assurance (QA), and Independent Verification and
Validation (IV&V) to complement each other while achieving their
respective goals.

4.1 Identifying Software T&E Organizations

Software T&E planning asctivities begin at the initiation of
system acquisition, Critical to this planning is the early
identification of all program participants and the definition of
their distinct roles and responsgibilities. For example, OSD and
Service Headquarters may place requirements on :the testing
process. Test activities are primarily performed by the Program
Office, associated contractors, and the Service T&E Agencies.
In addition, other organizations (e.g., Support Agencies and
User Commands) may provide support during the definition and
execution of specialized tests. Because of their varied
involvements and the needs of individual programs, each group
will organize differently for testing. Table 4.1-1 lists
typical testing responsibilities of orgenizations directly
involved in system acquisitions. In all cases, these
organizations participate in the testing of the system, and are
either directly or indirectly involved in the testing of the
software components of the system.

49

- - -

-y . ——

Chapter 4:

Orgenization

Deputy Under Secretary
of Defense (T&E)
(DUSD (T&E))

Director, Operatiomal
T&E (DOT&E)

Service Headquarters

Development Commands

Program Offices

Contractors

Cevelopment Test
Agencies

Operational Test
Agencies

A

Software Support

Agencies

User and Training
Commands

— > —w ¥ ~ = e -~ — — T T T e T v

|

Management and@Schedulel

Regponsibility

Setting of DT&E policy withim DoD,
the review of TEMPs, & the provision of
technical assessments tc¢ the JRMB,

Oversight bf OT&E within DoD, the

review of TEMPs, & the provision of OT&E
assessments to the JRMB, Secretary of
Defense, & Congress.

Review of summary test results for
funding, schedule, & fielding
recommendations.

Review of summary test results for
funding, schedule, & performance
decisions,

Overall planning & sometimes conduct of
the DT program. Review & approvel of
contractor test documents for adherence
to specifications & the comtract.
Support of OT. :

Preparation, execution, reporting, &
analysis of results of DT.

Planning, conduct, & reporting on DT
with respect to satisefying the required
technical performance specifications &
objectives.

Planning, conduct, & reporting on all
OT&E with respect to system operatiomal
effectiveness & suitability. Monitoring,
participation in, & review of the
results of DT&E to obtain information
applicable to OT&E objectives.

In some cases, IV&V of the software &
evaluation of the software for
maintainability.

In some cases, support of OT &
evaluations of software usability.

Table 4.1-1: Orgenizetiomal Test asand Eveluation
Respongibilities

30

r. asnes e P Y WY e T e T T w v~ -9 - - L e] - - - R 2 s di bl

Chapter 4: Management and Schedules

Once the roles and respongibilities asare defined, the
enphasis of the organizing activity shifts to that of
determining the appropriaste amount of independence that shall
exist between the participants for the duration of the
acquisition, The benefits derived from organizational
independence include alternate interpretations of ugers' needs
and attainable solutions, and unbiased portrayals of acquisition
risk. The achievement of organizational independence requires

sdditional manpower and resources. Decisions concerning the
extent of independence s8appropriate for a given program must
balance these costs and benefits. This basic tenet of

organizing for testing, independence from development, is also
important for software testing.

DoD~-STD~2167 requires that high-level software tests be
planned, conducted, &and analyzed by a group that is independent
of the software developers. This approach has been found to be
most successful on past programs [STE 86]. The degree of
independence strived for during lower-level tests must be
decided for each program based on the risks associated with
various software subsystems and components. Common approaches
for accommodating independence within contractor organizations
include establishing an independent software test group within
the software engineering organization; assigning responsibility
for high-level software test to the system engineering
organization; establishing a software test group within an
existing independent T&E organizatiom; or assigning
responsibility for software test to an independent QA
organization. t ‘

The Program Office must allocate staff sufficient for the
detailed review and approvel of contractor software development
and test activities. If objective decisions are to be made and
contracts are to be managed intelligently, this staff must have
a working knowledge of software and testing technology. In some
instances, the DT Agencies can provide an independent assessment
of the software development and test activities.

The OT Agencies are requiresd by DoDD 5000.3 to be separate
and independent from the Development and User Commands. There
organizations typically test systems and not components of
systems (including goftware components). However, they need to
be aware of the software's intended contributiom to the
operational characteristice of the system and the software test
resultes to date,

51

Chapter 4: Management and Schedules

Finally, an IV&V Agency can provide detailed technical
analyses of software implementations and methodologies. IV&V
techniques are usually sapplied to sugment other testing
activities in aress of high risk. This role may be taken on by
a contractor (other than the development contractor), the SSA,
or the DT or OT Agencies. A benefit of having the SSA perform
the IV&V of the software is that it allows early preparatiom for
the eventual maintenance of the software. The SSA can also
influence the software design and development to improve its
maintainability.

In .addition to independence, the early identification of =a
software manager within both the Program Office and the
contractor's development team has been found to be important to
the success of scftware development and testing [STE 86]. The
softwvare menager acts as the focal point on all scftware related
matters and has totel responsgibility for the software
development. In some cases, independent software test managers
are also designated. Past experience indicates that the
establishment of & separate software manager and associated

staff in the Program Office should occuvr at the. initiation of
? the program, or at least prior to any maionr development contract
| : awerds, to ensure proper focus on softwace and coftware test
planning [STE 86]. ’ '

>

Finally, the use.of individuals in participating
} organizationa that are experienced in similar applications, as
i well as software development, has been found *to improve the
i overall quality «f the software product [STE ¢5]. Although
recent college graiuates may be better versec in modern software
} technolugy than existing prograw persomnnel, the knowledge of
application-specific problems and opportunitiess for explecitation
of the technology may be lacking. In particular, software
testers with both software and applications experiemce possess
greater insignt into the attributes that corbine to form
exemplary software test provedures and rerfults. Furthermore,
the maturity gained from involvement with similar systems can
ease the burden of the tester/operator training required to
ensure test realism. The proportion of high-level experienced
individuals assigned to a program must be &ppropriate to the
expected complexities.

4.2 Balancing Test and Evaluation Activities

Ultimately, decisions %o emplcy specific types of software
testing techniques must consider boti» the cost of the techniques
and the cost of the system failures that they are designe¢ to
prevent. If 8 system is man-rated and performs & funntion
directly affecting the defense of the United Stat~s, the cost of
encountering failures is naturally higher than that associated
with office sautomatioa system failures. Obviously, & program
should be willing to apply more resources to the testing of
man-rated systems than office sutomation systems.

52

- gy

Chapter 4: Management and Schedules

The goal of software testing is to demonstrate capabilities
and reveal errors that may exist. The cost of an erroz
remaining undigcovered until the software ie in operational use
is composed of the cost of the system £failing to meet its
mission objectives and the cost of repairing the error.

Historically, it has been shown that the cost of repairing
softvare errors rises dramatically as the development
progresses. Therefore, the most useful testing strategies or
methcdologies emphasize achievement of test objectives &s soon
as necessary software components are available. This does not,
however, obviate the nesd for OT. True system behavior can only
be ascertained during system employment in an operational
environment using typical operator personnel.

Although 8ll types of softwave testing techniques share the
common goal of preventing system failures, each (e.g., DT, OT,
QA, IV&V) has its own distinct objective and set of activities:

The objective of DT is to verify the attainment of technical
performance specifications and supportability. DT
activities include the planning, conduct, and evaluation of
tests at the unit, integration, and software system levels.
Unit tests are concerned with exercising the software and
demonstrating the capabilities of individual components (or
units). Integration testing is performed on aggregates of
units that have successfully completed their unit level
testing and usually emphasizes interfece testing and the
composition of system functions. The DT process culminates
in acceptance testing of the total software system (followed
by the total system) with respect to defined requirements.
Testers should be involved during early program phases in
the analysis of software requirements to ensure that they
are testable and traceable to individual test cases.

The objective of OT is tc determine the effectiveness and
suitability of the system for use in combat by typical
military users. Like DY, principal OT activities are the
planning, conduct, and evaluation of tests. OT differs from
DT in its concentration on mission needs and the functioning
of the system in & typical operational environment. Again,
as for DT, OT will benefit from having testers involved in
the analysis of software requirements to ensure testability
and traceabilty.

The objective of QA is to ensure adherence to standards,
conventions, and requirements, and successful completion of
activities according to specified criteris. Q2 activities
include defining software development standards and
procedures, and monitcring the software process and products
to ensure compliance.

53

‘..-.v -r v v— ——v -+ e e e T e v T e vy

Chapter 4: Management and Schedules

The objective of JIV&V is to ensure that the software will
not fail in its operational mission, either by failing to
correctly perform an intended function or by uninteaticnally
performing an undesirable function. Verification activities
examine the product of each phase of software development
(e.g., requirements analysis, preliminary design, detailed
design, coding) for consistency, completeness, and
traceability to the product of the previous phase.
Validstion asctivities demonstrate the consistency,
completeness, and traceability of the final software product
to its original requirements.

Table 4.2-1 indicates which of the above types of testing
techniques would normally be expected to contribute to the
evealuation of the software's achievement o0f thresholds with
respect to the opersational and technical characteristics
discussed in Section 3.1. It should be noted that the omission
of an X in a8 cell of this figure does not indicate the
prohibition of & type of testing technique for the investigation
of a characterigtic. In some cases, it may be desirable to
supplement the activities described with additional analyser.

Operational effectiveness characteristice are best
demonstrated through the execution of the software. Although
the true behavior of the software can only be demonstrated in
the actuval operational .environment, the conduct of OT, and the
correction of errors found during OT, are too expensive to incur
without some confidence that the software will achieve the
required thresholds. Once this confidence is obtained through
DT, OT is employed to substantiate the DT results., In addition,
for mission critical softwere or high risk software components,
DT and OT may be supplemented with examination by an IV&V
Agency. *

-

It is a#lso importanmt to demonstrate the operational
suitability charccteristics through OT., With the exception of
maintainability, all of these characteristics can also be
examined by DT, and should be for the ressons noted above. In
instances where stringent requirements have been placed on the
characterigtics, IV&V can be applied to reduce the associated
risks. For maintainability, & dynamic test would consist of
making a specified change to the software while measuring
attributes of interest (e.g., time, cost). .The reason that DT
or the application of IV&V techniques are not advocated for
maintainability evaluations is that the information gained from
dynamic tests in 8 laborastory setting cannot be used to infer
that the software will be maintainable by the actual SS&
utilizing the true support environment.

54

s - s

Chapter 4: Management and Schedules

e . G S G G T T T G S G S Y G T A MM Gt S G G S G S A G e G D I G TS E G S M G G e T D S G g B G S O D G — G T e e G

e . G - T G T G s G S e G SR G D e S S e ST G S D G e G WD G G Gy G T G S G G G S Y R I SR D D TR G S S g

tOperational Effectiveness ¢ X D ¢ s : X :
: Characterietics : : : s :
:Operational Suitability
: Characteristics H
: Availability o+ X : X+ : X 1
: Integrity : X :+ X :+ % : X
: Interoperability : X : X : X : X 1
: Maintainability ¢ 1 X : X : 1
: Reliability : X : % : : X 1
: Usability : % i % : %X :
‘Technical Characteristics
: Correctness o+ X : &1+ % 1
: Efficiemey :+ X+ 1+ X
. Expandsbility i X i+ %X :
¢ Flemibiliey o+ o+ i x
i Portabilicy o+ % ¢ 1 X : 3
: Rewsability : i %z .
¢ Testability o+ % ¢ : o+ E
Table 4.2-1: Scope of Test Activitier

55

PRI —— S N—————— r——

N o o

Chapter 4: Management and Schedules

When attsinment of an operational suitability characteristic
is deterwined, in part, by adherence to selected ctandards or
conventions, QA tecluzigves can be used to support the required
@évalverinn in & cost effectivc manner. For instance,
programming and documentation standards uz:c uastasly required to
support maintainability goals. Examples of other standards and
conventions associsated with operational snitability
characteristics include communications protocols that promote
interoperability, accepted keystroke sequences that may enhance
vsability, and standard encryption techniques that provide
integrity. The use of QA techniques to examine the
implementation of required standards would be expected prior to
the conduct of OT.

Whereas the demonstration of the operational characteristics
discussed above ultimately depended upon OT, the demonstration
of technical software characteristics depends upon the results
of DT to the exclusion of all 0T. Recall that in Section 3.2
the process of refining operational characteristics to low level
requirements eventually uncovered technical characteristics., As
the system is constructed, the technical characteristics must be
demonstrated as & foundation upon which to achieve the required
operational characteristics.

In this case, DT is supplemented by either QA or IV&V
activities. Once again, QA is employed in instances where the
uce of standards or conventions contributes to the achievement
of technical goals. IV&V techniques tend to be more appropriate
when dynamic testing is the primary method of demonstration. In
Table 4.2-1, only QA activities are essociated with the
technical characteristics of flexibility and reusability. This
is because it is believed that the use of modern programming
practices enhances the ability to achieve these characteristics
which have geained interest very recently and are not yet well
defined.

In the discussions above, IV&V activities were recommended
to supplement DT and OT when the software was mission critical
or introduced substantial risk to the acquisition., It should be
realized that there is &8 broad spectrum of IV&V activities which
can be used on a specific program [Orl 84]. For instance, if a
minimal IV&V program is desired, its activities should
concentrate on the establishment of a good requirements baseline
and development procedures. In addition, & thorough analysis of
the test program should be conducted. If 2 wazimal IV&V progras
is desired, its activities should establish a high level of
confidence in all aspects of the system including the design and
implementation. This would include independent testing as
opposed to independent analysis of the DT program.

56

G

Chapter 4: Management and Schedules

In addition to DT, OT, QA, and IV&V activities, specialized
sanalyses may be performed with respect to selected operational
and technical characteristics. For example, availability or
reliability models may be used to predict achievement of
characteristic thresholds. These models must be validated.
When usability presents critical issues, human factors
experiments may be conducted. When security is of prime
concern, special certifications must be obtained. These
analyses compliment those associated with DT, OT, QA, asnd IV&V.

There are many opportunities for overlap between DT, OT, QA,
and IV&V activities. When striving to minimize redundancy,
those activities that can be accomplished earliest in the
development process should be chosen and assigned to the
organizations which can provide the desired independence as
described in Section 4.1, For example, if a critical
operacional software issue can be addressed during DT as opposed
to OT, the OT Agency should ensure that DT plans and procedures
will produce the necessary data for independent evaluation by OT
personnel.

4.3 Sharing Information between Organizations

To effectively utilize the limited resources available for
testing, information must be shared among the organizations
involved in the test process. Two types of information are of
interest: test planning information and test results. Test
planning information is evaluated to determine the opportunities
for combined testing or elimination of redundant tests. Test
results are assessed to determine progress and the impact of
less than satisfactory results on other planned tests.

The acquisition decision-making hierarchy is organized
around a8 vertical flow of information., DoDD 5000.3 requires a
softwvare T&E program that provides for "effective sharing of
test results across life cycle phases as well as improved
vertical flow of information within the decision-making
structures...” In general, test results are summarized as they
are passed from the lower to the higher decision levels of a
program. In other words, producers and consumers of information
operate at differenmt levels of abstraction. To achieve
effective sharing of information, the consumers need to be able
to access information at a level appropriate for their review,
and data at each level of eabstraction must be maintained for
future reference. Two requirements need to De satisfied to
accomplish information sharing:

57

— -...wvvwv\g-

Chapter 4: Management and Schedules

First, early in the structuring of the program, agreesments
must be reached that allow participating organiszations
access to software test information, as needed. These
agreements must asccommodate consumer needs for access to
uncompressed information so that independent analyses of
test results may be accomplished. For exzample, it may be
appropriste for sn operational tester to access the results
of DT but the operational tester must perform his own
analysis and draw his own conclusions. 1In sddition, special
requirements for data collection must be concurred with and
documented., The documents may take the form of memorandums
of agreement between government agencies or contracts
between the program office and industry participants.

Second, physical communications vehicles are needed to allow
the information to be propagated, in a timely manner. An
ideal model of thig would be a&a network of providers and
consumers with access to all information at any level rf
abstraction. Since this model is not likely to be
implemented on most programs, the users should establigh
requirements for the lesast amount of information necessary
to conduct their activities, while reserving the right to
access more detailed information if the need arises.

A special case of information sharing arises when an IV&V
effort is utilized. The IV&V team must rective current
information throughout the software development to technically
evaluate the process and products of the development team. The
IV&V team must also report results of its analyses in a manner
that allows the development =2ffort to benefit from the findings.
Special timing considerations arise when relevant information
must be transmitted via the program office to maintainm the
independence of the parallel efforts of the development and IV&V
teams., Time is required for the program office to examine the
development team's products and the IV&V reports before relaying
all necessary and appropriate information to each respective
team. It is imperative that arrangements be made very early in
the program life cycle for the timely and efficient sharing of
information between these groups.

If agreements are not reached early in the acquisition
process concerning the information to be shared among
organizations and the responsibilities of each organization with
respect to collecting, processing, and reporting results, there
is a risk that opportunities for data gathering will be
overlooked. 1In some cases, the only way to recapture the lost
data may be to completely recreate the missed test.

58

Chapter 4: Management and Schedules

4.4 Bcheduling Software-Related Events

When constructing software development and test schedulas,
key software items must be available to support software T&R
events that culminate in key software subsystean demonstrations.
These T&E events must be scheduled to support system level testa
and demonstrations. The scheduling of these dasic events must
also accommodate integration, analysis, and regression testing
requirements, and take into consideration the availability of
personnel, testing tools, and other support items.

It is interesting to note that, in fact, the entire software
development schedule is driven by the system/software test
schedules and therefore should be derived from them, When 2 new
program is authoriszed, the date of the availability of its
Initial Operational Capability (IOC) is specified. Following
this, the major events that culminate in a working system are
scheduled to coincide with the specified IOC. These mnajor events
include test events (e.g., key subsystem demonstrations). In
order for testing to occur on subsystems, for example, the
subsystem's components must have been previougly integrated.
Prior to integratiom, unit tegting must occur, and prior to unit
testing the units must have been developed. Thus, the
development schedule is derived from the test schedule. Each
event of the overall schedule is planned to achieve the goal
IocC. From thig, it s8hould be obvious that a key element of
successful programs is the initistion of test planning
activities very early in the development schedule.

The overall program schedule must allow time for the
integration of software components, as well as for the
integration of software and hardware components. Even though
individual software components may have satisfied their unit
testing requirements, time must be allotted for integrating the
components and getting the aggregate to operate satisfactorily
prior to the initiation of integration testing. Likewise, time
must be allocated for the integration of software and hardware
components prior to scheduled system integration tests,

Another activity that consumes time and should be explicitly
allowed for in test schedules is the analysis of software test
results. The amount of time 8allotted must include that needed
to obtein test results, which may be observed directly or
received from other organizations that conducted or participated
in the test. Time must also be allotted -for the interpretation
and analysis of the results, the determinestion of whether or not
the actusl test satisfied test plan requirements, and the
production of test reports. Finally, any dependencies that
exist between teste must be carefully considered sc that
scheduled stert dates of dependent tests allow time for the
required analyses of previous test results.

Chapter 4: Management and Schedules

degressior testing is another essential part of software
development. After errors have been located and repaired,
regression testing is performed to ensure that no new er:rors
have been introduced during the maintenance activity. Since it
is not possible to predict how many errors will exist in each
softvare component, rit is difficult to determine a priori how
muchk time must be asllocated for regression testing in the tast
schedule. When possible, estimates of appropriate allocaticns
should benefit from past experience with similar systems. Any
schedule that does not provide for regression testing is
suffering from a case of hopeless optimism and should bte
rejected,.

Tools used to test software are usually software programs
themselves. Thus, the overall program schedule must include
milestones for .the acquisition and test of the software test
tools. Important considerations when developing software test
schedules include:

If the necessary software teat tools are not available 0TS,
ingsure that the program milestones allow for their
development and test prior to their scheduled use.
Appropriete mergins should be incorporated into the test
schedule so that any problems that may arise duriug the tool
development will not impact the testing of the syatem
software. Contingency plans should be made to allow the
continuance of the overall test program without the newly
developed toolsg, if needed.

Whether the tool is custom built or OTS, the overall test
schedule should allow for the validation of the tool afiter
delivery. Since evaluations of the effectiveness and
suitability of the system software may depend heavily on
information provided by the software testing tools, it is
imperative that the tools themselves be carefully tested and
evaluated prior to their use.

Since many software testing tools are large consumers of
computational resources, schedules must &allow either time
for the acquisition of additional resources to support the
tools, or adequate time to permit their use within the
confines of existing rescurces.

Finally, the test schedule must accommodate training and
familiarization of test personnel with the new tools.

60

e

Chapter 4: Management and Schedules

In addition to software test tools, the aveailadbility of
other support items, such as system hardware, simulators, or
special test equipment, may also need to be considered when
scheduling test events. The use of these items depends not only
on their availability, but also on their correct performance and
the availability of any personnel needed for their operation.
In some instances, schedules must also provide dedicated system
time to allow potentially destructive software tests to occur.

Finally, the scheduling of software tests must take into
consideration the availability of personnel that will bde
necassary to conduct the tests. For example, technicians,
hardvware designers and testers, software designerzs and testers,
and computer operators are some of the personnel that may be
required to conduct a particular software tast, Furthermore,
schedules must allow for training personnel with respect to the
system requirements, test requirements, and operation of the new
system.,

4.5 Utilizing Technology as a Management Aid

The planning and management of software testing, described
in this chapter, can be aided bv the application of appropriate
technology. Automation should be used wherever possible to
enhance the decision making capabilities of managers. The use
of a computer network to share test information is an example of
modern technology benefiting the decision making process by
allowing access to information that would not otherwise be
available for consideration in the required time frame. OTS
cogt estimation and tracking systems, spread sheet packages, and
scheduling and monitoring tools, in many instances, can be used
to increase the effectiveness of management, Automated decision
support systems with accompanying databases and communications
capabilities are also available commercially. Program
.management personnel ghould be aware of available technology and
perform cost-benefit snalyses to select management 2aids for
application to their program.

61

CHAPTER 5

PLANNING AND Rg£ZORTING

Careful and realistic test planning is the key to
successful test programs. By the same token, test reports
document the execution of a test plan and are therefore critical
to the assessments mnade a2z 8 result of T&E. A common factor inm
many troublesome acquisition programs is the lack of detailed
and effective test plans and the absence of adequate mechanisms
for reporting test results. On the other hand, early
formulation of test plans and timely reporting of results, allow
designers, managers, and executive decision makers to identify
technical and administrative deviations £from program plans and
to respond quickly, often—-times saving the program from
expensive corrective mesasures later on.

Many institutional forces work against detsiled software
test planning. Frequent objections include claims thet test
Plans and reporting requirements increase development costs and
invite micro-management of the development effort. A common
excuse for delayinyg or ignoring sBoftware test plans 3is that
critical software properties cannot be specified to any usgeful
degree until late in the acquisition process. These represent
legitimate concerns, but a well-structured test program can
address these issues while still providing for early and
detailed planning aimed at determining the status of the
software.

In simple economic terms aslone, early and complete test
planning aimed at assessing software quality, freedom from
design defect, and overall capability, can repay even large

investments many times over, Figure 5.,0-1 shows one way in
which early testing efforts can help reduce overall progran
costs [Boe 76]). The chart illustrates the incremental

(relative) cost of finding and removing software errors during
the various software life cycle phases, This study indicated
that the increase in the cost of finding and removing errors as
the software moves to operation anc¢ maintenance can be as muck
as 100 times the corresponding costs during early 1life cycle
stages., The costs due to testing would have to be
extraordinarily large to offset not only the defect removal
costs, but alse the operational costs stemming from logistics
delays, lost system functions, and possible mission failure,
Ever ir prejects with minimal attention te testing, as much as
40% of the total software life ecycle costs can represent
testing. The only wey to ensure that this investment 1is
effectively utilized is through test planning and reporting.

o
(5>

100 Y r ; T T ry
sop . -
P
[' TBN-50D
- o 618 v
80% u' .
10} % MEDIAN — TRW SURVEY =
20%
LY o =
RELATIVE
cosT
10
FIX
ERROR oL -
1 o I
0.5 -
0.2 =
0.‘] 1 1] }
REQUIREMENTS DESICN CODE DEVELOPMENT ACCEPTANCE OPERATION
TEST TEST.

PHASE IN WHICH ERROR DETECTED

FIGURE 5.0-1: RELATIVE COST OF ERROR CORRECTION

e Ak

- .

.

R . e i

" mdarsiim,

T Wl =

.

Chapter 5: Planning and Reporting

5.1 Understanding the Test Planning Process

Establishing a test program that requires rigorously adhered
to software test plans and detailed test reports may be resisted
by technical managers. For one thing, test plans represent a
chain of accountability. In particular, esch management &nd
technical level in the programmatic structure of & development
program is responsible for a link in a chain of test plans.
This gives managers increased visibility into the status of the
software and requires the specification of success criteria for
the project as a whole. In poorly managed programs. this level
2f vigibility may indeed be used to micro-manage or otherwise
stbvert the program organization. In well managed programs,
hewever, the test plans fit into the project organization. As
will be described below, the planning process can be integrated
with the overall engineering effort. It does not by itself
cause programs to either succeed or fail. However, an effective
test planning process is a powerful instrument that is more
often associated with good program management and technical
success than with unsuccessful programs.

Each acquisition program must eventually answer the question
of how to best include software-specific issues in test plans.
In previous chapters, the problems of identifying software
risks, requirements, and test issues have been treated in somne
detail. The test planning process described in thiz chapter is
a logical '‘next step: once the software-specific critical T&E
issues have been identified, tests '‘are planned whose objectives
include the resolution of outstanding T&E issues.

The beginning of the chain of test planes is the TENP
required by DoDD 5000.3. This plan is & system level document
that defines and 1integrates system characteristics, critical
issues, test objectives, responsibilities, resources, and
schedules for T&E, As a matter of policy, the TEMP contains
descriptions of the planned and to-date software T&E effort for

‘all software components that implement mission critical

functions or represent special sources of risk in the system
acquisition. :

Below the levels addressed by the TEMP are test plans for
the increasingly detailed treatment of software. These levels
include tests of software subsystems and conifiguration itemsg,
tests that reflect the status of integrating software components
and functions with each cther and with harcware components, and
tests that are applied to the components as well as to the lower
level structures or unites from which they are composed. At each
of these levels, more detailed plans elaborate the plamns cf the

levels above them in the hierarchy. Results of these tests
combine to summarize the extent to which more general T&E issues
have been resolved by the test. This process is the chief

vehicle for the "vertical f:-v of information"™ required by DoDD
5000.3.

65

hagle

Chapter 5: Planning and Reporting

The development, acquisition, and support of MCCR software
is govetned by Service requlations for the management of
computer resources in defense systems. In addition,.
DoD-STD=-2167 'provides requirements fcr inclusion in contracts
for the development and acquisition of MCCR software.
DoD-STD~-2167 is a product of initiatives sponzored by the Joint
Logistics Commanders and ig for use by all Military Services.

Ags described in Section 2.2, DoD-STD-2167 assumes the
existence of a SSS and draft SRS as a starting point for the
software development process. Although the SSS and SRS are
primerily requirements documents, each includes a section that
defines qualification requirements and therefore contributes to
the test documentation chain. The qualification requirements
gection of the SSS contains the testing philosophy and overall
approach to be followed, the assignment of responsibilities for
test performance, recquirements and consgtraintse on formal
testing, and a cross reference between system requirements and
qualification methods, levels, and formal test requirements.
The qualification requirements gection of the SRS specifies the
methods, techniques, tools, and acceptance tolerance limits
necessary to establir- satisfactory software quelity, If
qualification and testing requirements are to be adequately
reflected in the SRS, software test planning must commence in
concert with the specification of the software requirements.

. When executing the DoD-STD-2167 test process, information is
created in the form of Software Test Plans (STPs), Software Test
Descriptions (STDs), Software Test Procedures (STPRs), and
Software Test Reports (STRs). Amplifying the SRS test-related
requirements, the STPs set requirements, outline organizations
and responsibilities, specify resources required, and provide
testing schedules. The STDs include input data, expected output
data, and evaluation criteria. The STPRs contain the step by

step details for test conduct. Finally, the STRs summarize the

test, results, and anairysis, and provide recommendations.

The detailed formats of individual test plans are specified
by applicable policy, regulations, or standards. However, all
test planning documents should contain the following
information.

System Description: a description and identification of the
system, subsystem, or components that are to be tested.
Included in the system description is a brief discussion of
any operational concepts that may eaffect an evaluation of
the test results,

Test Objectives: a2 summary of the technical or operational
characteristics to be demonstrated by the test. Most
-important to articulating these objectives are the required
or threshol!d values for the characteristics and the specific
questions or issues that must be answered in order to
determine whether or not a threshoid value is achieved.

66

e

i e

PP — e e T R ——

Chapter 5: Planning and Reporting

Past Testiag Summary: an evaluation of peast test results
that includes a description of objectives achieved and an
indication of issues left unresolved by previous tests.

Planned Tests: specifications of tests or methodologies to
be applied. These should be in sufficiemt detail to
indicate that the test objectives will be satisfied.
Programmatic Summaries: information pertaining to test
budgets, schedules, resources, and organizational matters.

At the level of the TEMP, these planning elements deal in

.very specific terms with the relationship between the software

and other system components, particularly insofar as the
software's status will affect assessments of overall system
worth, In more detailed test plans, such as those required by
DoD-STD-2167, the issues will have been refined to reflect more
specific aspects of the software's design and construction. At
the still more detailed levels that correspond to test
procedures, the test "methodologies™ may, in fact, be detailed
descriptions of test sequences and the expected results that the
tester will use during the conduct of the test.

Regardless of the level of test plan, all of the elements
noted above are essential aspects of the planning documents. By
requiring the test organization to state its objectives in
conducting the test, to give explicit parameters by which the
system's success or failure ig to be judged, and to expleain the
manner in which the test supports these, the progrem is
protected from ad hoc and ineffective testing approaches. A
plan structured in this way also serves as a "contract"™ that
binds evaluators and developers to observe the same evaluation
and success criteria, so that even over very long periods of
time, consistent management controls can be exercised over the
development effort. Another key aspect of plans organized in
this manner is their ability to evolve. Each such plan is a
"living document™ that, in addition to presenting testing which
has not yet been carried out, contains the history of the
development effort as revealed by the testing that has been
conducted at that level. For example, the TEMP is a living
document that is updated annually and addresses the changing
critical issues affecting a major acquisition. It is essential
that test plans reflect the actual program progress,

Finally, the importance of the creation and maintenawvnce of
the complete test documentation chain for a program cannot be
overemphasized, In some cases, future events may result in
questions that can be answered by analyzing existing test
results, possibly supplemented with results from limited new
testing. If evidence concerning software behavicr and quality
is improperly recorded or lost, & program cannot benefit £from
such economies. In fact, a lack of proper documentation may
call into question the sufficiency of the total test program.

67

e vy

P
-~y

Chapter 5: UPlanning and Reporting

The following sections of this chapter provide a8 roadmap for
constructing effective test plans at all of these levels, Like
all roadmaps, there is 8 certain amount of detail that cannot be
supplied Fere. Bowever, there are five major pitfalls that, if
left undetected, can subvert even the mcst well-conceived test
plan. '

Vague Requirementsg: While testere do not directly define
operational and technical requirements, they are respomsible
for deriving test objectives that asddress those
requirements. Vague requirements that are not stated in
testable forms, or that do not adequately constrain
developers to design a system that meets user requirements
cannot be used as a basis for effective test planning.

Inappropriate Standards and Contracts: Test resources aze
scarce. The resource base can be quickly depleted
responding to contractual requirements and starndards that do
not support the test objectives for the system. The use of
established standards, even if they are tajilored for the

contract, has been found to improve the overall quslity of
testing as well as software development [STE 86].

Ad Hoc Methodologies: T&E evaluations are based on
assessments of capabilities as described irn test reports.
Use of methodologies that are scientificelly unsound, not
eccepted for use in standa:d practice, or make use of
unvalidated or undemonstrated techniques and models, reduces
the soundness of the assessments. Successful softwere
testing of major systems has historically been achieved by
using systematic test approaches for both integration and
requirements verification [STE 86].

Unsharable and Non-Repeatable Results: Without sharable and
repeatable tests, there can be no vertical flow of
information between testers (and evaluators). In
particular, tests and evaluations of tests at one level in
the hierarchy might have to recreste essential tests
rerformed at subordinate levels. This can increase the cost
of tests dramatically,.

Not Connecting Software to the Rest of the System: All
software tests ultimately support system~level assessments
of suitability and effectiveness. If the software test
program 1e¢ not defined in concert with the system acs a
whole, the finel and most important part of the chain of
test plans is not ccomplete.

In esch case the rource of each problem described above can be
corrected if it is detected early enougtk. However, if the
problem is not corrected, it can cause major difficulties, not
only for the test program, but also for the development and
acquisition programes 8t large.

68

Chapter 5: Planning and Reporting

5.2 Planning for the Demonstration of Software Characteristics

The general DoDD 5000.3 provisions for software testing
include the following:

a. Testing to ensure that system and mission objectives
will not be impaired by improperly designed,
implementsd, or maintained software.

b. Articulation of quantitative goals and thresholds for
the required technical and operational characteristics
of software components and subsystems responsible for
carrying out critical mission functionms.

C. Testing of software to eachieve a balanced risk with the
hardware. :

d. Use of systematic, quantitative and objectively
reportable software tests to ensure that subsequent
evaluations represent the status of the software in the
mest realistic terms possible.

e. Institutionalization of a progressive approach to
software testing to provide for effective sharing of
test results across life cycle phases as well as
impraved vertical flow of informationm within the

. decicion-making structures of the Military Service and
0SD levels.

The following subsections describe the major planning activities
that ghould be carried out to satisfy these criteria.
Relating Test Objectives to Critical T&E Issues

T&E issues are questions that must be answered in order to
determine whether the system possesses & given operational and

technical characteristic, Depending on the type of
chdracteristic being addressed, the issue will be addressed in
either system level or component level test plans. In many

cases, operational issues are treated in system level plans and
technical issues are reserved for component level plans.
Frequently, however, software T&E issues center on one or more
compone~*s regardless of whether or not the issue is technical.
For ¢ e, a computer controclled radar system may have an
opergta. -1 (effectiveness) requirement to track 1,000 targets.
One issue derived from this requirement may be whether or not
there is & combination of inputs achievable during & given time
interval that causes a software buffer to overflow.

69

Chapter 5: Planning and Reporting

As described in Section 3.3, critical T&E issues are derived
by a decomposition of more global issues. The development of
the issues reflects the design process. It is a "top-down"
process in which each new issue refines the one from which it
descends. Tests are designed to resolve an igsue. Bach test
has an explicit objective that relstes to a critical T&E issue.
Thus, an issue that questions whether or not & software message
processing system correctly processes all messages of type M1,
M2, and M3 may be addressed by the following test objective:

Objective A: This test will demonstrate that all messages of
type M1 that contsin less than 10 binary digits
(bits), any 26,000 randomly chosen messages of
type M2, and all 5 possible messages that camn be
produced by the source of M3-type messages are
processed properly.

Notice that even in this hypothetical example, the
conditions of the test are spelled out in considerable detail.
The problem of whether or not the three kinds of tests chosen
for message types M1-M3 determine an answer to the corresponding
issue is the central one to be golved in designing the test. 1If
T&E issues are derived in "top-down"™ fashion, then test
objectives are designed to respond to the issues in a
"bottom-up", or progressive, wvay. In other words, objectives
that address technical issues at the component level must be
designed, and tests must be performed to meet those objectives,
before higher level test objectives can be formulated. A
frequent mistake made in even small-scale software development
efforts is to ignore this hierarchical process; in particular,
to weait until the software is integrated into systems or
subsystems to formulate test objectives. The resulting
objectives tend to be very complex. Furthermore, tracing the
source of unresolved issues tends to te labor-intensive and
time~consuming. On the other hand, test objectives that build
upon each other allowv more opportunity to treat T&E issues at
the appropriate level of generality, increasing the overall
menageability of the testing effort.

Suppose that, in the example above, the message processing
software is actually the software driver for the function in an
aircraft heads up display (HUD) processor. This processor
receives signals (message type Ml) from a pointing device (such
as 8 traekball) that the pilot controls and uses to move an
eiming symbol across the display. Alternatively the processor
receives signale from a suite of instruments (message types M2
and M3). A higher level test objective may be:

Objective B: Demonstrate that, when stimulated with signals
. generated by a certain simulator, the HUD
processor moves the aiming symbol to the correct

point on the display.

70

— -~ v - - s W= ew vy - - T oWy ey reT T

Chapter 5: Planning and Reporting

The detailed test objective "A" gupports this higher level
objective., However, attempting to test to this objective, "B",
directly can be very damaging to the test plamning hierarchy.
For example, without first resolving the more detailed issuec of
vhether the sampling function for the pilot's pointing devices
(at most 10 bits per sample cycle) has been properly
implemented, any attempt to resolve objective "B" leads to tests
of great complexity in which anomalies are very difficult to
trace,

Even though there is an explicit releationship between test
objectives and T&E issues, it may not be a direct and obvious
relationship. The most common situstion in which this leads to
complexities in designing tests is when the critical T&E issue
questions the statistical likelihood of a certain event, but the
test objective (for reassons of cost or technical feasibility)
does not. For example, in support of an operational
requirement, it may be questioned whetbher or not 98% of eall
messages received by 8 software subsystem are processed with a
certein outcome. In the test objective "A", this problem is
resolved by dividing the messages that can be received into
three types. There are only 5 distinct messages of type M3 so
whether or not they can all be processed correctly can be
determined by exhaustive analysis. Similarly, the physical
properties of the pilot's pointing devices make it impossible
for message M1l to contain more than 10 bits, so by exhaustively
testing all 1,024 10 bit messages the software's complete
response to M1 messages can be demonstrated.

Now, exhaustively testing M2-type messages may be
infeasible. But assume these messages have been produced by =a
uniformly random source and that the software responds
incorrectly to 8 given message with a known probability. After
observing 26,000 message—outcome pairs and seeing at least
25,800 processed properly, it may be possible (because of the
wvay the problem is set up mathematically) to conclude that 99%
of the time all messages will be processed correctly. If that
is the case, then satisfying the test objective indeed
guarantees that 98% of the messages are processed correctly.

As the test objectives become more detailed and highly
specific to the software being tested, statistical
justifications become mcre abstract and less reliable. In these
cases, the objectives may strive to demonstrate software
capability in "typical"™ cases or in cases that correspond to
especially sensitive "extreme" values. If the objective is to
support a statistical requirement, and if the test designer has
only & qualitative conception of how the typical and extreme
cases relate to the quantitative requirements, then some extra
margins of safety may need to be built into the test. This may
involve, for example, tests whose objective is to demonstrate
that an error of a certain type is not present in -the software
or that certain quality-enhancing measures have been taker in
the software design.

71

r————v P —— —— A e R T S

Chapter 5: Planning ond Reporting

No matter how thorough the test nor how careful the design,
some issues will remain unresolved. Depending on their
criticality, these irsues may affect system level risk
assessments, Sometimes the system is ullowved to proceed along
to the next programmatic ascquisition phase even though major
issues are still unresolved. This wmight occur because of an
estimate of the expectad response of the system to a known
threat. It might also occur because the demonatrsted test
objectives indicate that the critical issuecz will eventually be
resolved in the mature system (it is, for example, rossible to
initiate "reliability growth programs™ that involve extensive
redesign and reteating of components or even whole subsystems to
resolve reliability issues). ITn specifying test objectives, it
is helpful to know whether or not these unresolved issues are to
be incorporated into new test objectives. In general, teat
objectives that have not been fully met are left "open™ through
one mechanism or another. One possibility is to maintain two or
more concurrent tests, conducted by perhaps different
organizatiorns, to resolve issues at differing levels of detail.
In this case, twc distinct objectives may be addressed in test
plans directed at entirely different groups of testers. Another
possibility is to note the extent to which an issue bas not been
resolved and continue to the next level of the hierarchy. In
this case, test objectives are really an accumulation of the
objectives for the current level and the unmet objectives from
lower levels. Although the management of the test program
becomes more complex, it is possible to mix these two
possibilities in the same test program. In all cases, however,
the updated test plan (in one of the formats described above)
will reflect the demonstrated status of the system as revealed
by the extent to which critical T&E issues have been resolved by
meeting appropriate test objectives.

Const:ucting &8 Traceability Matrix: An Example

Thus far, this manual has discussed the determination of
required software operational and technical characteristics, the

.identification of software T&E issues, and the definition of

software test objectives. The importance of traceability and
the maintenance of a complete and accurate test documentation
chain has been stressed throughout. Therefore, prior to
describing the testing approaches that can be employed to
satisfy specific software test objectives, the process of
constructing a traceability matrizx to aid in the control of
software testing will be illustrated.

o

Chapter 5: Planning and Reporting

A traceability matrix is a tool that can be used to track
the decomposition of system requirements from the system level
to the implementation level. For each requirement below the
system level, a traceability matrix documents its source in a
higher level specification. It can be used to highlight
instances where requirements have crept into the system at a
level below the system specification and where requirements have
been overlooked and not allocated to lower level components at
all, In addition, trsceability matrices can be used to reflect
the completeness of planned testing at each level by including
pointers to the test case(s) that will be used to verify each
functicen, component, or unit, Since the elements of information
that are reported in the traceability matrices become availabdle
as the software development progresses, the traceability
matrices are living documents that grow and evolve in concert
with the software.

The following paragreaphs describe the requirements and
components used to comnstruct the sample traceability matrices
depicted in Figures 5.2-1 through 5.2-4, Each entry in a matrix
is an example of a partial requirement, component, or unit,
Also included is an example of an associated test case that
would verify a portion of the entry.

Mission/Function Matrix Requirement
Mission: Carry Out Electronic Communications.

Function: The ZZZ System shall produce target messages in a
format compatible with the XXX Comrunications
System for inclusion in the target track file of
the WWW Command and Control System. ‘

The system mission/function matrix described in Section 2.1
and illustrated in Figure 2.1-2 will be used as the starting
point for this example. Suppose that the system under
development is 3 Sensor System that interfaces with a
Communications System, and that ultimately the data's
destination is a Command and Control System.

System/Segment Specification Requirement

The following requirement is an excerpt from the
requirements of the Target Message Reporting Function of the
Communications Subsystem of the Sensor System. It has been
abbreviated to simplify this example and the relevant tracing to
lower levels of the system decomposition (see Figure 5.2-1).

73

[

XIRUYA ALTIEVIOVHL SIN3N3HINDIY WIALSAS OL SNOLONNS :4—2°S 3M8NSid

SNOLLIGNOD
QIRIVA ¥3IANN SAVIAA 3INLL
AM3IAN30 39VSSIN 3YNSYIW :3SVD 1S3l

SANOO3S SI NIHLIM S1¥0d3Y :
39VSSIN 139YVL H3AM3A :ININFMNDIY

\SYY / ¥°2C¢

NOILVOIAVN
SNOILVOINANNOD
ONDIOVYL
NOILVOLJISSV1D

NOLLISINDJV

S3SVO 1S31 d31YI00SSY ANV SININ3HYINOIY WILSAS

~ SNOILONNA

Chapter 5: Planning and Reporting

3.2.2 Comnunications Subsystem
3.2.2.: LN N
3.2,2.4 Target Message Reporting

The Communications Subsystem of the ZZZ Sensor
System shall format and output messages to the XXX
Communicetions System for delivery to the WWW
Command and Control Systenm. The Target Maessage
Reports shall be in the QQQ format and shall be
delivered without aging beyond 15 seconds of track
escabligshment. The Communicstions Subsystem shall
retransamit errored messages (as detected and
reported by the XXX Communications System) within
1 second of notification of errored delivery...

The following test case could be used to test the Target
Message Reports aging requirement. It is based on several
assumed requirements of the system. First, the Target Message
Reports have a time field that reflects track establishment.
Second, the report delay is assumed to be a function of system
load. Therefore, the test case is based on measuring throughput
delay from the time of Target Message Report generation to
delivery as a function of system load.

.This is, of course, only an examplé. In a real systenm,
items such as the following would also play an important role in
the development of an appropriate test: the statistical

properties of system load, other system loading requiremente and
priorities, other messages that may be interfering with
delive:ies to the Communications System, requirements for
internal error recovery or fault tolerance, the fidelity of
relevant simulations, the extent of aveailable measurement
facilities, and the required accuracy of the test.

4,4,51 Test Case for Target Message Reporting

Simulate or produce the system load as specified
in other =sections of the specification, produce
targets for reporting (either through simulation
or other means), and then measure the time delay

from track establishment te delivery to the XXX
Communications System.

75

Chapter 5S: Planning and Reporting

Softwvare Requirements

The SSS requirement stated above is decomposed and alloceted
to hardware and software components as follows: the message
transmission requirements are allocated to hardware and the
nessage formatting requirements are allocated to software. In
addition, the response to the retransmission request is
sllocated to software. The paragraphs of the software
requirements specification that reflect the allocationm of
nossagc processing requirements are included below (see Figure
5.2'2 .

3.2.8 Communications Processing
3.2.8.x ‘o

3.2.8.3 Target Message Reporting
3.2.8.3.1 Inputs

1) Established Target Track File from Tracking
Function

2) Errored Transesmission Indicator from
Communications Processing Functioan

3.2.8.3.2 Processing

The Target Message Reportinmg Function shall
maintain a list of Delivered Message Indicators in
the Established Target Track File. This 1list
shall be used to determine the age of tracks and
ensure that all established tracks are reported
within 15 seconds of estsblishment. In addition,
this list shall be used to determine which
messages have to be retransmitted Jdue to Errored
Transmission Indicators received from the
Communications Processing Function. The Target
Message Reporting Function s8hall construct the
Target Message Reports in accordance with
Mil-Std-asas, format QQQ.

3.2.8,3,3 Outputs

1) Target Message Reports to Communications
Processing Function

76

G- TN

e

%"’I sty it i PR apiey bSPTIR RNy

XIMIVN ALMIGBY3OVAHL SINIWIYINDIY IJUVMI40S OL WILSAS 2—-2°S wnvld

SNOLLIONOD SS3¥LS ¥3IANN
ONV ‘S3LVY 40 ALIRVA V LV
INIL @313103dS NIHLIM S3OVSS3IN ‘
YIAM3A OL ALMNIEY 3¥NSVIN °3SVO 1S3l

SANOJ3S SI NIHLIM NOLLONNS
ONISS3008d SNOLLVYOINANNOD OL
SLH043IY 3IVSSAN LIONVL Y3AT3A *LN3NHINDIY 4+

LELYY / €8CF

- —— et

S3ISVD 1S31 d3LVIOOSSY ANV SININIYINDIY JYVMLHO0S

SINIWININDIY
WILSAS

Chapter 5: Plsnning and Reporting

The requirement for augmenting the Established Target Track
File implies that this function receives the Target Track File
for transmission to the Communications Processing Function. 1In
most designs, this would sctunally %e implemented as a passing of
messages, with the Tracking Function maintaining the Target
Track File and just sending marks or messages to the Target
Message Reporting Function telling it which messages are to be
trangmitted. In addition, this fuaction would return a message
or mark that indicates which messages need to be retried due to
errors. The resgon for pointing this out is that functional
requirenents don't necessarily reflect the actual design.
Therefore, tests of functional requirements need to be as design
independent as possible.

4.4,137 Test Case for Target Message Reporting Fumction

Determine the Target Message Reporting Function's
ability to deliver Target Message Reports to the
Communications Processing Function within its
specified time, as well as its ability to react to
a variety of delivery rates for Target Message
Reports. This test case shall verify that Target
Message Reports are delivered within 15 seconds of
establishment by the Tracking Funmnction. The test
case shall also generate tracks marked for ocutput
at various rates based on expected target loading
on the system. In addition, rates of generation
shall be ugsed that stress the function beyond that
specified to determine its ability to handle short
term peak loading effects.

Software Top Level Design Allocation
The SRS requirements have been allocated to & computer
software component named the Target Message Reporting Component
(see Figure 5.2-3). For brevity, all aspects of the software
top level design have not been included. The requirement for
errored message retransmission has been used for the following
example.
3.6.1 Target Message Reporting
3.6.1.1 Inputs
Errored Transmission Indicator from Communications
Processing Function (1 word, maximur input rate of
1 per 100 transmitted messages)

3.6.1.2 Logical Dats

3.6.1.3 Interrugis

78

i LA

XIHLVA ALITIBYIOVHL
SLN3aNOdNOD NOIS3d 73A31 dOL OL SININIMFINDIY FAVMLLOS *€—¢'S 3diioid

o | SNOLLIONQOD
ONIGYOT Yv3d OGNV TVNIAON ¥3ANN
_3NLL G3LID34S NIHLIM 1S3N03Y _ &
¢ SS300¥d OL ALNIEY AJIM3IA :3SVD LS3L

JAIL G3LVOOTIV NIHLIM

Hmuaoum..zo_mm_imzépum mmwoomn_ ININFEIND3IY 4 L
E : /)
@

8levy / L O¢ ¢'g7°¢
@
®
®

87°¢
@
?
®

S3ISVD 1S3L @3LVIOOL .Y T U s anadine3d

ANV SLW3NGAWNOD NOIS3d M3A3T 401 JHVMLAOS 4U4VMLACS

AN Ve

em e b @ bk e el - - — s sl on P VPSR S A [E

fw '.-.. — v —— —— A T S - —w e wry -

Chapter 5: Planning and Reporting

:'A3.6.1.4 ;Timing'and Sequencing

The Errored Transmisssion Indicator shall be
processed within 300 milliseconds of receipt and
shall output & request for retransmission to the
Comuunications Processing Function withim 350
milligseconds of completion of processing under
vorst case system loading conditiomns.

3.6.1.5 . Processing
3.6.1.6 Output
Target Messaeage Retransmission Request to

Communications Processing Functiean (20 word,
format as defined in Appendix A) '

4.4,218 Test Case for Target Message Reporting Component

This test case shall verify that the Terget
Message Reporting Component is capable of
processing the retransmission request withirn its
allocated time. It will generate Errored
Transmission Indicators at the specified rates and
measure the time of geherating the Target Message
Retransmission Request, In addition, the test
case shall generate Errored Transmission
Indicators at rates exceeding those specified to
determine its ability to process Errored
Transmission Indicators under peak loadirng
conditions exceeding those specified for the
component. To measure the response time
accurately, the measurements shall be conducted in
an environment replicating or simulating actual
operational conditions. ’

Software Detail Design Allocation

AW-* AP - ety s sty Ayt gy o llisr .

The software “op level design has been allocated to a set of
units that actually implement the process of responding to
Errored ‘ransmission Indicators (see Figure 5.2-4). One of the
units accepts the Errored Transmission Indicator, decodes it,
and initjiates the processing by other unite in the component.
This control unit would be described in the following type
format.

3.3.4.3.1 Errored Transmission Indicetor Control Unit
3.3.4.3,1.1 Inpu-s

2.3.4.3.1,2 L.ocel Date

: : XI¥YIVA ALNIBV3IOvHL
| | SININOdNOD NOIS3A a31Vi3d OL 13A3] dOL VMLIOS +—¢’S FdNotd

: S1NdNI SNO3NOYAI
_ w_ ANV GINVA HLIM 031N3S3¥d
,ﬁ | : NIHM SINIVHLSNOD ONINLL
o NIHLIM HOIAVHIE 103¥H00 AJiM3A :3SVO 1S31

ONISSI00dd
U3d0o¥d 3LVILINI ONV JOLVOIONI

NOISSINSNVYL G3d0¥¥3 300030 ‘LNINIHINDIY 4 o
: .
m ¢
W Gee vy / L'SVEe 1°9°¢C
&
@
4 .
M S3SVJ 1S3L d3LVIO0SSY ANV " | SIN3INOdWQO
(SLINN) SLNINOJWOD NOIS3A Q3TVLIA F¥VMLA0S N9IS3d
_ 13ATT dOlL
F J4VYMLAOS

A Chapter‘St Planning and Reporting

>3.3;4.3.1.3 Process Control

3.3.4.3.1.4 Processing

3.3,4.,3.1,5 Utilization of other Elements
3.3.4.3.1,6 Limitations

3.3.4.3.1.7 Outputs

4.4.325 Test Case for Errored Transmission Indicator
Control Unit

This test case shall verify that the unit properly
decodes the Errored Transmission Indicator and
calls the units that process the message. It
shall consist of proper and erroneous Errored
Transmiesion Indicators, and shall determine
whether the control unit properly queues requests,
calls the correct units, and responds to errored
requests. In addition, the test shall determine
whether or not response to the requests occurs
within the allocated time for the unit.

The traceability matrices illustrated above are essential
tools for the management of the software development and test
process, In addition to assuring completeness and revealing the
introduction of non-required functionality, they can be used
during the maintenance process to estimate the impact of
changing or adding requirements. Finally, as shown above, they
can be used to ensure adequate coverage of test objectives with
respect to system and software requirements.

82

T e e

e

Chapter 5: Planning and Reporting

Selecting a Test Approach to Satisfy a Test Objective

In order to satisfy s test objective, a sequence of tests
sust be carried out, That ig, a series of software executions
must take place. These executions can be scenarios of the real,
integrated system operating in its intended environment, or they
can be single instances of simple program units (such as
subroutines) operating in isolation from all other program
units. The data that stimulates the software in any such test
is referred to as "test data®™., During OT, the test dats for the
software is contained in the overall mission profile dats used
to define the test scenarios (e.g., the data defining the
position of the airplane is determined by the actual position of
the airplane during the test, the limits of resolution of any
sensing devices, and the rate at which positional data is
sampled). In laboratory settings, the test data may be supplied
by simulators of the mission profiles. During unit and
integration test phases, the data is supplied by programs or
human testers that generate values for unit parameters, input
variasbles, and other unresolved data references that the
software may request. In each of these cases, the test dats
should be derived according to a specified technique or test
methodology.

The principal requirement for test methodologies is that
they support the corresponding test objectives. In many cases,
the objective will -specify the range of acceptable
methodologies. In other cases, the methodology is selected as a
result of an analysis of the objective and how to best support
it., Two common errors in test planning are to either
overspecify or underspecify the test methodology that supports
the objective., Overspecification occurse when the test designer
jumps directly into the detsailed description of test procedures
(e.g.s "...move switch labeled 'BAY_2' to position 'ENABLED',
observe blinking locator symbol at position...") without first
defining the reason that this test supports the corresponding
ocbjective, Underspecification occurs when neither the test
objective nor the test specified in the test plan constrain the
tester to present test data that meets any special technical
criteria., Such ad hoc testing is very difficult to use in a
rigorous justification that the objective has beer met, Ad hoc
tests are also not sharable, and so should be avoided for that
reason as well,

Matching methodologies to objectives usually involves
cost-benefit and other tradeoffs. This is &also & good
opportunity to assess the realism of the test objactives. For
example, an objective that can only be satisfied by an
exorbitantly expensive test (the cost of which far overshadows
its potential benefits) is probably not realistic and should be
modified. The matching process is, to some extent, controlled
by the degree of confirmation required by an objective. There
are twc approaches:

e

o

Chapter 5: Planning snd Reporting

Necessary Conditions: A test methodology represents a
necessary condition on the test if the
only way in which the test objective can
be satisfied is by the success of the
test methodology. In other words, if
the software fails to satisty the
conditions of the test, then the test
objective has not been met.,

Sufficient Conditions: A sufficient condition is one that
implies the test objective., That is the
test methodology presents a sufficient
condition for the objective if the
success of the methodology means that
the objective has been satisfied.

For example, a certein computer program may have a test
objective to demonstrate that 90% of all inputs are processed
correctly. If there are only 10 possible inputs, then a
sufficient test methodology is to exhaustively test all inputs.
If all are processed properly, then the objective is satisfied.
As an example of necessary condition, suppose that a certain
system has a test objective to demonstrate that the system can
perform in an operational environment for a period of ten hours
with at most 25 failures to perform an essential function. A
necessary condition, then, is that no sequence of test data to
the software results in more than 25 mission-essential failures

of a software function over the same period. A family of
methodologies that frequently are used to provide necessary
conditions are the so-called "coverage" tests. Generally

speaking, test data satisfies & coverage condition if a
proportion of a structural characteristic has been exercised by
the test data. For instance, a specified target identification
algorithm in a software component of &an electronic warfare
system may be implemented by a table in which the 10 possible
target types are represented by rows of the table. The columns
may represent the 225 distinct sensor configurations .that are

possible, An entry in the table represents the action to be
performed when the indicated target is detected and the sensors
are in the selected configuration. If a test objective is to

demonstrate that all targets are correctly acted upon regardless
of the sensor configuration, then it is necessary to
structurally cover all 2,250 target-configuration table entries.
Notice that this may not be sufficient tc guarantee that the
objective is met (there may be real-time constraints that ceuse
correctly identified targets to be processed incorrectly, for
example, . However, if even one of the entries of the
target-configuration table is not exercised by test data, then
thet specific action may lead to incorrect processing and so the
objective of demonstrating that all target~configuration pairs
lead to correct actions cannot be net,

84

[prem

Chaptar 5S: Planning and Reporting

One wvay of classifying the available systematic testing
approaches is in terms of Test Type (static or dynamic),
Visibility (black-box or white-box), and Life Cycle Phasec (early
or late). Static and dynamic test types differ in the sxtent to

which software code is actually executed during the conduct of

the test. When utilizing static analysis techniques, the
software ig usually not executed; rather, human code resaders cr
automsted analyzers process program text in order to 1resolve
outgtanding issues. Dynamic analysis techniques, on the other
hand, depend on code execution for data concerning the
software's behavior. Black~-box &and white-box tests are
distinguished by whether or not internal program structure is
used to define test cases or determine effectiveness of the
tests. In black-box tests, the program is considered to be a
closed system, about which only external input-output behavior
is significant. White-box testing approaches are free to use
ell structural information to define the test. Finally, the
details of applying a test approach are heavily influenced by
the life cycle phase.

While it is, in principle, possible to consider all kinds of
tests in this scheme, in practice, certain combinations of test
types, vigibility, and life cycle phase seen to work more
effectively. For example, it is common to find static,
white-box analyses used during very early design phases, but
hardly at all during very late development phases or during
operation and maintenance. . .

The following is a summary of systematic testing approaches
that are commonly used to support test objectives [DeM 87].

Static Analysis

Static test methods are primarily used during early design
stages to verify the congistency of intermediate engineering or
incomplete software products with prior specifications or other
documents. The nature of static methods makes them ill-suited
for directly addressing operational issues. Nevertheless,
static analysis is the principle tool for deriving early
estimates of whether or not required technical characteristics
are satisfied. Some of these methods simply measure the extent
to which basic engineering standards have been satisfied. Still
others carry out more sophisticated analyses (e.g., is there
software which cannot be reached by any feasible controcl path?).

85

g B _aaae o ov—Ce — - ———— — - —— B U, -—

Chapter 5t Planning and Reporting

An important class of static methods involves the gtructured
"reading"™ of program instructions. These readings or
walkthroughs can be carried out in a group format (during which
the group may play an adversarial role) or by a single
programmer. Some major issues that can be resolved with this
technique are the following: (1) Is the design complete? That
is, does every specified requirement get successfully addressed
in the design? (2) Is the design consistent with itself as well
as with previous specifications and constraints? and, (3) Are
all elements of the design traceable to a specific required
function feature or capability? One difficvity in relying on
static analysis, particularly those approaches utilizing
subjective evaluations or human readers, is their relative non-
reproducibility. Although such tests csn be planned #nd carried
out to support specific test objectives, test reporting and
sharing of test results may not be possible.

Structural Coverage

: A structural coverage test is satisfied if test data can be
supplied that causes the execution of the specified percentage
of the structural features of the software to be executed. A
common structural coverage mecasure is statement coverage: a K%
statement coverage test ig satisfied by any test data that
results in the execution of KZ of the basic statements in the
software program. Variations on statement coverage include such
conditions as demonstrating that each executed statement is
necessary. Another structural coverage measure is decision-to-
decision branch coverage. This is a generalization of statement

coverage. In statement coverage testing, &8 conditional or
branching statement is considered the same as a non-branching
statement: ag long as it is executed by the test data, it

contributes to the total coverage score of the test. For many
programs that contain branches, however, the mere execution of a
conditional statement is less significant than exercising all of
the possible outcomes of the conditional. These decision-to-
decision branches must be covered at the specified percentage in
order to pass this kind of test. Coverage of higher 1level
structural features (e.g., the entries of the target-
configuration table discussed above) may also be specifiesd in e
test plan. While structural coverage terts are seldom used as
sufficient conditiorn~ for a test, they are commonly included in
tect plans as necessary tests.

86

T T YT T T e v

B [e A g

Chapter 5t Planning and Reporting

Domain and Path Coverage

It is common to use distinet processing paths in the
softwvare to partition the universe of possible inputs to the
software into "domains". In the case that each procaseing path
thus selected corresponds to s specified processing thread for
one or more functions, then the distinct domains may also bDe
interpreted as types of inputs as in the HUD processing example
given above. A frequently useful methodology can be based on
sinmply specifying the proportion of the total number of paths
that must be covered by the test data. This is not, however, a
simple structural coverage test since these paths can involve
the complex intertwining of structural features (e.g., the
multiple and interleaved repetition of 1loops). Like the
structurally-based tests, simple path coverage m2thodologies
tend to be useful in generating necessary but not always
sufficient tests. In some programs, the number of paths is so
large that the proportion of the paths is not meaningful. In
these cases, the "highly likely"™ paths may be selected for
execution. If these paths correspond to distinct types of
inputs about which statistical frequencies are known, then path
coverage tests may be useful for developing sufficient
conditions on the test objectives.

Frequently, the domains have & mathematical or geometric
structure that can be exploited. The "domain strategies™ use
previously gathered information about the likelihood of ‘certain
kinds of errors involving the definition of domains to generate
tests., When depicted graphically, these tests might specify
that a certain subset of the test points should be selected on
one side of & domain boundary, a second subset on the other, and
at least one test point should fall exactly on the domain
boundary. If such rules guarantee that certain kinds of domain
errors will be revealed (if present) then the domain strategy
may be an effective necessary test.

Another type of path coverage test that is often used to
infer tiat objectives are satisfied is the "symbolic test"., In
symbolic testing, a mathematical formula is derived by executing

& certain path or set of paths symbolically. Thie formulae is
then compared to the specified or required properties of the
path. If these are consistent, then the path representes a

correctly implemented series of processing steps.

87

Chapter 5: Planning and Reporting

Tests for Computational Errors

Even when statements have been executed and domains have
been selected properly, there are many errors that arise due to
mnistakes in designing computational staps. A useful test
nethodology £for detecting computational errors is ™data flow
analysis®™. This is actually a family of analysis methods that
detect anomalies in tha handling of data that are indicative of
errors. Data flow snalysis will detect, for example, situations
in which a dats value is accessed by the software before a
definite value has been assigned to it. Data flow analysis
measures are easily automated and may be included in the
compiler for a modern higk order programmiag language such as
the Ada* language.

A particularly intractable kind of computational error is
one that defeats 8 test because the test result is
coincidentally the ssme as a point at which the computation
happens to give correct results (e.g., if s test results in
calculating 2x at the point x=1, and the program should have
calculated 2 raised to the power x, the test will not detect the
error). No single computational methodology is sufficient to
detect such errors. As a result, the tester may have to apply a
variety of test methodologies.

Error Coverage

Tests that specify error coverage criteria are passed when
test data are supplied that demonstrate that the given errors do
not occur in the software. If the errors have a relationship to
the test objectives, then error cov:rage tests are useful
sufficient tests of some kinds of objectives, As a methodology
for ruling out various kinds of errors, at least minimal error
coverage tests are usually necessary.

A common category of error coverage tests are mutation
tests., These are the software version of the single fault
coverage tests frequently used for digital hardware. In
mutation tests, the errors are modeled on a statistical sampling
of the errore that the programmers are likely to make. Because
of its statistical basis, mutation testing ¢an be tailored to a
given set of test objectives.

* Ada ir & registered trademark of the U. S. Government (Ada
Joint Program Office).

88

Chapter 5: Planning and Reporting

Other error coverage tests (relsted to mutatiomn) include
variations of path and domain testing in which the selection of
test data for each path and domain is guided by a set of rules
that will reveal certain types of errors if they are present and
the "error-sensitive test case analysis™ and "weak mutation"
methods which provide for fixed test data construction rules
that will uncover the occurrence of specified errorsa.

Incremental and Non-Incremental Integration Tests

A common objective in integration tests is to demonstrate
the accumulated incresse in functionality guined as software

units are bound together in subsystems and systems. The
performance of the integrated components is specified by
external and functional specifications. Sometimes these

specifications can be hierarchicslly decomposed and identified
with individual units as shown in ‘Figure 5.2-5. In this case,
incremental integration tests may provide both necessary and
sufficient test criteria for the stated objectives. These tests
demonstrate the correct implementation of each of the decomposed
subfunctions and then verify that the integrating components
combine the subfunctions properly.

Frequently, however, the functions specified at the

. subsystem level do not have an obvious incremental relationship

to the software units. In this case, &8 non-incremental. test
such as & "thread test"™ is needed. In these tests, processing
paths or threads are identified and tests are designed to
support the objectives associated with the threads. The
distincvion between incremental and non-incremental tests is
that during incremental tests, higher level tests combine the
tests of their components. During non-incremental tests, on the
other hand, external process descriptions (such as might be
contained in &8 system verificatiom disgram or software
requirements definition) are used to generate the tests which
might involve the intertwining of several units,

Functional Tests

Functional tests demonstrate the correct implementation of
functional specifications ard requirements. These may be either
operational or technical specifications. While many functional
testing methodologies are specific to the application at hand,
severel general concepts recur.

8%

4 NOLONNS ONUNINTIdNI W WNILSASENS G—2°G JuNdH

WA |

¢CN

A

N

¢cd

YA

AL

L'

¢'d

Chapter 5t Planning and Reporting

A common goal of functional testing is to stress the
functions. That is, to demonstrate the beshavior of the softvare
vhen limits and capacities are approached and exceeded. At the
unit level, this may involve selecting tests that correspond to
extreme or "out—of-spec" values for unit parameters or input
variables. At the gsystem or subsystem level, the corresponding
stress test may involve test dasta that saturates a given systenm
capability. During OT, functional stressing can be demonstrated
by exceeding software system capacities by specified amounts.
While stress testing is seldom sufficient to determine whether
or not objectives have been met, these functional tests are
frequently necessary to exhibit the performance parsameter limits
of the system and to exhibit failure modes and effects.

Another useful functional test methodology is "random"
testing. Random tests involve the selection, generation, or
extraction of test data from a statistical or stochastic source.
During unit testing, the statistical source may be s generator
that samples from a source according to a certain probability
distribution, During integration testing, 8 simulator may
provide the statistically meaningful frequencies of occurrence
of data values, while during OT, the statistical variations in
the actual mission profiles are the source of randomness. If
the test designer has confidence in his knowledge of the
underlying probability distributions, then random testing can be
used to effectively estimate operational reliabilities and other
statistical parsameters. In these instances, random tests are
used as sufficient conditions on the test objectives.

Late Life Cycle Testing

The applicability of systematic test approaches during late
life cycle phases such as operation and maintenance is
determined more by external factors than individual
characteristics of the test approaches. For example, using an
error-based test for in-line testing of software in an
integrated, operational system is usually possible provided that
the necessary instrumentation is aveilable and there ies enough
free processor capacity to support the overhead associated with
the test.

An important class of late life cycle tests is the
regression testing that must be carried out to assess the impact

of software changes. Key issuer of regressior tests revolve
garounu the expense o¢f re-running large numbers of individual
tests. While these¢ concerns are influenced by project
management strategies, some technical aids are useful, Being

able to assess the impeact of program changes requires two-way
traceability between program text and the historical record of
critical T&E issues, Furthermore, errors, failures, and
corrective actions should be reported and tracked to enhance
traceability. '

91

R

g

Chapter 5: Planning and Reporting

Testing Real-Time or Embedded Software

Epbedded, real-time and parallel applications often involve
software test issues that require extre attention. Many of the
methodologies that apply resdily to sequential applications
become infeasidble in these environments. Often the only
availsble methodologies require that test objectives de scaled
down. A major source of difficulty in testing software for
these applications is the complexity of interactions between
components., Whereas sequentially organized programs can be
tested and test results described by deterministic methods,
parellelisgm includes stochastic behavior and multi-threaded
control. The sheer number of possible syster states often
frustrates thorough tests of integrated systems. 1In some cases,
systen design can influence the ease of testing (e.g.., loosely
coupled parallel systems are easier to test thanm tightly coupled
ones). The early involvement of testers in the design process
is valuable in steering designers away from inherently
untestable system architectures. In other cases, early testing
of operationel aspects of system components can be used in place
of OT objectives for the system as & whole,

In many ceses, instrumentation also presents special
problems when conducting these and related tests. During early
test phases many properties of the running programs may be
invisible to the tester without instrumenting devices such as
counters that indicate which branches and paths have been

executed. During tests of integrated software systems, it
becomes even more difficult to peer into dynamic aspects of the
software. For example, in the RUD processing application

discussed earlier, the success or failure of a software function
may depend on the rate at which a certain softwere buffer fills
and empties, During unit testing this buffer may be completely
visible as an array or some other dats structure in a given
unit, In an integrated system running on an operational
hardware set, it is usually very hard to directly observe such
dynamic aspects of software performance without instruments that
are tailored to the task. The alternatives are generally
labor-intensive and are frequently not cost-effective to
implement, For example, & common way of gaining visibility into
such detailed features of the software if to interrupt an OT so
that the entire contents of the computer's memory can be
"dumped" to magnetic tape or disk., Thif dump is then analyzed
to extract information about the state of the software. Clearly
this procedure cannot be used very ofter during the course of &
test. On the other hand, it is frequently possible to place
"software hooks"™ intc delivered software so that hardware and
software instruments can be conveniently attached during
testing. If, for example, the message format of &
communications program is likely to become a critical T&E issue,
then it may be desirable to require the software developer to
provide & software switch that, in test mode, causes a given
message to be decomposed inte @& standard representation and
output to & designated I/0 port.

— - e A

Chapter 5: Planning and Repurting

It has been found that, when instrumentation requirements
are recognized early in a program, included in test plans, and
included in the software requirements specifications, the
quality of testing of major veapon systems is improved [STE 86].

Determining the Appropriate Level of Test

Most systematic test methodologies involve the selection of
a8 level to which the test canm be carried out., For example, in
structural coverage methods, the level of the test is an
explicit parameter: a 100X coverage of statements is & more
thorough test than a 50% coverage, In specifying the level to
which a test is carried out, the test plan should strive to
resolve the relevant T&E igsue with an appropriate margin of
safety. In general, the higher the level of the test, the
higher its cost. The lower levels of the same test have
) generally lower fidelity. These tradeoffs should appear as part
of the explicit analysis during test planning.

i It is frequently the case that some of the costs of
* o selecting very high levels for a test can be offset by using a
{ , higher degree of capitalization for the test; that is, by using
i more and more powerful computers, reusable hardware and software
instrumentation, or other capital expenses, the direct cost of
which can be amortized across several tests.

Using DT&E to Demonstrate Operational Characteristics

There is not always a8 single, synchronized schedule for
demonstrating test objectives. In particular, many T&E issues
that involve operational characteriutics can be demonstrated
relatively early in the software development process. Since
early demonstrations are almost always desirable, these
opportunities should be actively sought out.

In some programs, this has resulted in the construction of
nearly-operational integration test facilities for use during
DT&E. Simulators of operational scenarios and stimulators which
provide software inputs in place of external sensors and other
devices can, of course, be used in these environments to reduce
the costs or risks to life that would be incurred in an OT,
Such facilities are particularly useful in demonstrating
properties of the man-machine interface and mes&suring other
human factors of the design. Software interfaces are usually
very well-suited to these early tests since the appearance of
functions at the interface can be completely designed and the
corresponding functions c¢can be simulated by herdware and
software drivers, scripts, and simulators that are
indistinguighable by & human operator from the real, operational
functions. The use of string test facilities &and environment
simulators has been found tec improve the overall success of
software test programs [STE 86].

93

o metan B .. R he i e . e el . e —aai o o moa . ealme e e L e e

Chapter 5: Planning and Reporting

These facilities may have secondary benefits to the program.
For instance, integration test facilities that demonstrate human
factors of the man-machine interface, also tend to be good
vehicles for training and may thus continue to be useful 1long
after integration tests have been concluded.

5.3 Reporting Test Results

It might be supposed that in a properly planned test, the
reporting of test results is a simple matter, In fact, test
reporting is often complicated by the limitations of the test,
ambiguous events that are noted during the test, and failures of
instrumentation., This subsection presents some guidelines thut
are useful in reporting test results.

Identifying Discrepancies bDetween Test Articles and Planned
Operational Software

Test evasluations, particularly those aimed at operational
issues, usually include assessments of how closely the test
envircnment matches the planned operational environment. In the
case of software, the report of test results should specify any
discrepancies between the software being tested and the
operational software., The impact of these discrepancies on the
test objective being demonstrated should also be included, if it
is known. The following are common sources of discrepancies.

Hardware Differences

Differences between test hardware and operational hardware
can have a profound impact on the performance of the software.
Differences in memory size and organization, instruction
execution speed, processor and instruction set architecture can
all affect the software. Except in rare circumstances, OT
objectives should be satisfied on operational hardware.

Operating System Differences

Run-time operating systems found in typical operational
environments are different than those used by programmers and

designers. Run—time systemeg are usually optimized for
performance and intolerant of significant deviations from
specified usage. Opereting systems used during development are

usually optimized to eallow great latitude on the part of the
programmer and to facilitate sharing of resources such as memory
and 1/0 devices., This means that capabilities demonstrated in
the development environment may not be present in the
operational environment. Any T&E igsues that :Involve operating
eystem primitives, resources, or cells toc gystenm functions
should be redemonstrated in the operational environment.

9L

-*w'—v‘—wv”-s - . 3 yie sty il gy et

Chapter 5: Planning and Reporting

Standard Library Calls

Many programming languagees and environments implem~nt
standard operations such as mathematicel functions and
input-output in library packsges that are supposed to be
"standardized™. Rowever, due to differences in computasr word
sizes, underlying processcor architectures, or any of a dozen
other factora, the performance of these libraries can vary
widely from one system to another. Therefore, if the
operational software is required to compute the natural
logarithm of a real number and does 8Bc through a library
function, the accuracy of the returned value may have to be
revalidated in the operational environment, even if the accuracy
was determined perfectly in the development environment.
Standard library calls should not be incorporated into
operaticnal software systems without addressing the rpossible
differences. Standard sets of benchmark data may be available
from third parties for comparing libraries.

Relating the Teat Environment to the Operatiocnal Environment

Regardless of the care taken in structuring the
circumstances c¢f a software test, the limits imposed by the test
itself mean that the test environment and the operational
environment have differences. In laboratory testing of air
defense systems, for example, killed targets must be removed

from the screen by software. Iun the operational version of the

same system that software is not necessary. The following are
some common test limitations that give rise to discrepancies.

Simulated Inputs

The software may be stimulated in a much different manner in
its operational environment than in its test environment. A
simulator for real-time and embedded applications may not
feithfully model timing conditions at the software level.
Furthermore, 4actual software behavior may depend on converting
anelog events to digitized form in statistically unpredictable
wvayes. Simulators, or the other hand almost always choose &
fixed set of statistical models from which to generate digital
stimuli to the poftware.

Friendly Users

During uni: and integration teste and to some extent during
systerr level development T&E (DT&E), the users of the software
may be particularly friemdly. They may know, for example that
typing too fast on the keyboar¢ causes the software to "get
loegt"; therefore, they will not do it, Operational users cannot
be expected to be friendly. Operationsl T&E (OT&E) issuer
should be resolved with typicel operational userc.

ple
(6]

. L ol Ae i o b . A alB. . . A A P e o am e menditnn o WM . . A a .

Chapter 5: Planning and Reporting i

The Maintenance Environment

Determining vhether or not the software meets its
naintenance requirements is best accomplished by using typical
saintenance personnel in the environment where the actual
maintenance will be carried out. Developers may have access to
a host of special tools and capsbilities that enable them to
perform maintenance sctions. Some of these may be proprietary
or not otherwise deliverable with the operational sgoftware.
Thus, using development personnel in the development environment
is usually not a good way to resolve maintenance issues.

Interpreting Test Results in System Terms

In reporting test results it is important to address bdoth
the test objectives and critical T&E issues. If the resulting
acsessment deals with operational issues, the test results
should be stated in system oriented terms.

Error C assification

It is especially important that software's contribution to
operational suitability be properly reported. During laboratory
tests and OT, the classification of test events such as those
that require maintenance actions is an important aspect of test
reporting [STE 86]. These classifications are analyzed to
assign probable causes of failure and pinpoint system elements
that contribute to high failure rates, system unavailability, or
other attributes that negatively affect system suitability.

Figure 5.3-1 shows the usual wethod of classifying anomalous
conditions (e.g., failures that arise during tests). Any
incident during the test that requires unscheduled action to
bring the system back to an operational status is an unscheduled
maintenance action. These include failures of both hardware and
software components, Not 8ll of these incidents are classified
as mission failures, Test reports should specify those failure
conditions thet impair the system's ability to perform an
intendeé critical function.

96 !

. Mastiian M. .. N N S U Y S S U - el Ao S . . A ... _a

NOLLYOLJISSYTO IN3GIONI ALFNIEVINIY :L—€°S 3¥NOI4

SONHAA Sidbd T3 MNISHISNA d

SRNTIVS FuEMANEH

_ S3ANTIYS 3AUMLI0S

—— S3TIH4 NOISSIR — .

NOILOH JONHNILNIHW A3 NA3HISNN

—-———

Chapter 5: Planning and Reporting

Pach software incident that involves a system function F
should bdDe classified by specifying the failure effect, cause,
and required maintenance action. BEarly agreesment in test plans
on & common set of critevria for classifying reliability
incidents is desiradle. Common specifications include the

following.

Effect.

1. F does not respond to stimulus or operator action.

2. F respon's to stimulus but does not respond as
intended.

3. F responds as intended to stimulus but is
misinterpreted by the operator.

4. F responds to stimulus but with results degraded below
stated threshold.

Cause.

1, Stimulus is outside F's stated operating range or
requirements.

2, Failure is caused by mechanism external to components
implementing F. '

3. Failure is caused by mechanism internal to components

implementing F.

Required Maintenance Action.

1.

2.

- . des .an A ..

ol A i e . el . . e o an.

The effect of the failure is reversed without
maintenance action.

The effect of the failure is reversed by action of an
operator to restore the system to a non-failed state.

The effect of the failure is reversed by the action of
a maintenance operation thet changes the software.

The effect of the fasilure cannot be reversed by any
maintenance saction,

98

- & oa.

-———

v

Chapter 5: Planning and Kkeporting

Downtime Classification

Figure 5.3-2 shows the preferred method of classifying
system downtime during tests. This scheme should also be
applied to the software incidents as specified abdove. These
downtime agsignments are particularly usgseful in testing for
availability. The following examples illustrate some possibdle
event classifications based on observed downtime classifications
of softvare systemes (see Figure 5.3-3).

Fault Tolerant Recovery. In this case, suppose the software
detects the failed staste and recovers, thereby placing the
system in an operstional stste without operator intervention.
The downtime classification for this event is the following:
(1) operating -~ the time up to the point at which the fault
occurs, (2) standby -- the time during which recovery takes
place and the failed function is no longer available, (3)
operating -- the time interval commencing after full recovery of
the function takes place.

Responding to Changing Requirements. This represents a
maintenance action in which & change in software requirements
necessitates &8 re-engineering of a portion of the system. The
corresponding downtime classification is the following: (1)

operating -- this is the period of time until the system is .

removed from operation because the changed requirements render
the software ineffective in meeting system objectives (this
interval may overlap substantially with the maintenance action
of redesigning the indicated software component), (2) 1logistic
delay =-- this is the period during which re-installation of the
redesigned system takes place, (3) operating ~-- the time
intervael commencing after the re-engineered software becomes
fully operational.

Repair of a Fault,. This action may occur at a renmote
maintenance facility and have the same downtime profile as the
one given above if it is scheduled. If there is no logistic
downtime (i.e., if the event is unscheduled) ther the downtime
classification is as follows: (1) operating -- the interval
ending et the point that the failure renders the systenm
inoperative, (2) active downtime -- the interval during which
the fazilure is corrected by maintenance sctiorn (the gaystenm irc
expected tc be functicning during this interval, but it is not),
{3) operating =- the time interval commencing wher the fazlure
hars been repaired and the system ic restored tc operational
status,

- koA

=< 440

NOLLYOLJISSVIO INLINMOQ Z2—€°S 3dNOoLd

SALLUNISINIHGY J14S1207 AINHIS h ONI LR 3d0
: _ —

s

JWIL Hi01

STIINVX3 FHVYMLH0S £—€°G 38NOId

N340 FHIINMOG JALLY NI LHY3H0

| | [
! ' L
<3 N a—— Xld< 11NYd <= A0
ONLILNISO , AUTT JLISI0T SNILRGI0
! !
JONUHD

<—— X0 <u— THISNI<— NOISIAI— GINTFWININOII<—— 0

MULGH AGONGLS 4 INLLHRGIO

<——— 0 <—— ANIAOIRI=— LI <—— 0

' .
1yt r— W Soap—— it

Chapter 5¢: Planning and Reporting

Assessing Software Contributions to System Capabilities

The ultimate goal of reporting test results is to support
the assessmentes of system level evaluators. Siuce these
assessments are supposed to determine the contribution of
softwvare to risk, visibility into critical aspects of software
design and implementation is an essential aspect of test
reporting.

Test reports are not evaluatiens. Whether or not a test
ocbjective has been satisfied is detarmined by a 3separate
analysis of the test results, The role of the tester is to
independently neasure and report the behavior of the system with
respect to stated criteria. The evaluation process consists of
a progressive assessment of risk based on the test results
contained in test reports, supplemented with information
concerning the extent of testing. The evaluator is ultimately
responsible for assessing whether or unot critical T&E issues
have been resoclved and to what extent unresolved issues
contribute to overall engineering risk.

If the software development process has been structured and
managed so that there is & progressive flow of intermediate
engineering products and so that continual T&E of these products
has been used to assess suitability ani effectiveness, then
evaluations can proceed in an orderly fashion. If thesge
products are not available, an evaluatier is extraordinarily
difficult to carry out. The key issue here is visibility. 1In
an integrated system consisting of large quantities of hardware
and software, critical aspocts of the software design and
operation are effectively hidden under layers of software-
software and hardvare-software interfaces. During unit testing,
for example, it is generally possible to use structural coverage
and functional tests to thoroughly exercise & unit's input
variables. In the integrated system, these variables may be
rec2ptacles for data filtered through several hardware and
software subsystems., Thu:, stressing an individual software
component, as may be required to test a performance or
effectiveness characteristic, may be very hard simply because
the "real"™ independent varisbles of the test objective (the
input variables for the unit) are now being controlled by other
subsystems. Achieving & given ste.us or condition of the unit
may be dependent upon achieving values of the subsystems' inputs
that ere not possible within test limitations.

102

Chapter 5t Planning and Reporting

The evaluation criteris for esch of the interpediate
engineering products should reflect the sequential decomposition
of tect objectives. At the highest level of the evaluation
hierarchy are those indicators and criteria that are used to
judge the overall statur of the test program. Volume I of this
series of manuals elaborates these criteria. DBelow tnis level,
the evaluation criteria should de structured so that they
support one or more criteria from the level directly above. The
nost effective method of developing such criteris is to follow
the approach outlined in Saction 3.3 for top-down decomposition
of test issues. As each test issue is resolved on the basis of
aeeting or failing to meet a specified test objective, the
evaluation criteria for that test should attempt to aggregate
the test results into an overall picture of software system
status until the topmoust level of the hierarchy (i.e., the
syster level criteria) has been addressed,

103

CRAPTER 6
SOFTWARE TEST TOOLS AND RESOURCES

Many of the testing methodologies described in Section 5.2
can only be applied with the support of an automated tool.
Without automation, the possibility of btuman error during the
application of a testing methodology may negste any "“guarantees®
associsted with that methodology (e.g., error coverasge
methodologies can only guarantee the absence of specific errors
when they are supported by correctly implemented tools). In
addition, the computational demands imposed by many of the
methodologies make them impossidble to implement manually. This
chapter will outline areas of importance to the spacification of
automation requirements, provide pointers to sources of
information about existing automated tools, and discuss riskszs to
be congidered during the selection of goftware testing tools.

6.1 Specifying Requirements for Automated Support
DoD 5000.3-M-1 defines test resources as follows:

Test Resources. A collective term that encompasses all
elements necessary to plan, conduct, and collect/analyze
data from a test event or program. Test funding is the most
important test resource since all other resource elements
are derived from it. Other elements include test conduct
and support manpower {(including TDY costs), test assets (or,
units under test), test asset support equipment, technical
dats, simulation models, testbeds, threat simulators,
surrogates and replicas, special instrumentation peculiar to
& given test asset or test event, targets, tracking and data
acquisition instrumentation, and equipment for data
reduction, communications, meteorology, utilities,
photography, calibration, security, recovery, maintenance
and repair, frequency management and control, and
base/facility support services.

The most important software test resources are automated
software testing tools. The primary requirement that must be
satisfied by any automated testing tool applied onm a program is
that it support the definmed test objectives. For example, if a
low level test objective is to exercise 85% of &ll
decision~to-decisien branches ir specified units of software,
then an appropriate software testing tool would be one that
instruments the software and reports execution statistics. If
another test objective is to demonstrate that a critical
algorithm can complete processing within 2 milliseconds when the
system is operating under heavy load conditions, the capability
to measure timing statistics must be available.

105

P T

EEPUEPY [

e A _a . A

—— —— g < v T

—— e

Chapter 6: Softwa.e Test Tools and Resources

It is vunlikely that a single testing tool will be able to
support all test objectives for & program. 'In most cases, a
vuriety of testing capabilitiens will be needed. One approach to
satisfying this requirement is the acquisition or composition of
€ tooclset to support tasting sccivities. Although this may
currertly be the moot feasible - lternstive, there are major
pitfalls essociated wiih this approach. The most critical
barrier co the effuctive use of a set of testing tools is the
fact that unless the tools wore specifically designed to
cooperate, it is very unlikely that they will do so without
significant effort on the part of the tool user or tester. Even
in cases where inter-tool information exchange is not a coacern,
it is desirable that the 2o00ls work on a common repregentation
of the software. Again, this cannot be assumed. An alternate
approach is the scquisition or development of & testing
environment designed and built to maximize cooperation between
elements, minimize proliferation of software represeniations,
and ease the addition of capeabilities. Although implementations
may not be readily available, recent efforts have defined the
functional capabilities necessary to comprise a testing
env.ronment to support the needs of large programs [DeM 86].
Pegardless of the pack=2ging, however, the guiding principle when
selecting automated software testing capabilities is that they
should not be employed unless they specifically support a
carefully designed test. Othervise, their use will not
~ontribute to the overall goals of the test program.

Individual automated software testing tools can usually be
classified as either static analyzers, dynemic analyzers, cr
test support toocls. The remainder of this section %ill discuss
the range of furctionality that can be found in these classes of
tools,

Static Analysis Tools

Static analysis tools, or static analyzers, examine
information that can be obtained from a piece of software

without &actually executing it. This includes information
pertaining to the component's structure, and aesigh or coding
conventions. Existing static analyzers vary greatly in both

scope and functionality, ranging from systems which enforce
standards to those which perform sophisticax*ed analyses.
Functions implemented in static analysis tools are usually
selected from the following set [DAC 85, DeM 37].

Code Auditing: The determination, or enforcement, of
adherence to established procedures or standards.

Completeness Checkirn: The determination of whether or not

all subcomponents nycessary to form a component are present
and fully developed.

106

. matan M. . o, b i e . m el . . A A .~ o mee .omaba. S emm. .

Chapter 6: Scftware Test Tools and Resources

Consistency Checking: The determination of whether or not
each component is internally consistent in the senae that it
containg uniform notation and terminology, and externally
consistent with respect to its specification.

Cross Reference: The referencing of entities to other
entities by logical means.

Dats Flow Analysis: The graphical analysis of sequential
patterns of dats definitions and references to determine
constraints that can be placed on dats values at various
points of execution.

Error Checking: The determination of discrepancies, their
importance, and/or their cause.

Interface Analysis: The inspection of the interfaces
between software components for consistency and adherence to
predefined rules and/or axioms.

I/0 Specification Analysis: The examination of a software
component's input and output specifications, usually for the
purpose of generating irnput data.

Type Analysis: The determination of correct use of named

data items and operations, and whether or not the domain of

values attributed to an entity are properly and consistently
"~ defined. ' :

Units Analysis: The determination of whether or not the
units or physical dimensions attributed to &an entity are
properly defined and consistently used.

Dynamic Analysis Tools

Dynamic analysis tools, or dynamic analyzers, are tools that
support testing by collecting and examining informetion
resulting from the direct .execution of the software being
tested. Dynamic analyzers can be further classified as symbolic
evaliuators, test date generatore, program instrumenterse, oOr
program mutation analyzers. Each of these classes of tools and
the functions they perform will be discussed below.

107

;L o bhe o e . aalde. . e __a.. . .. e mom comalhan e . .

vyl g e

-t aan M .. B N S -

Chapter 6: Scftware Test Toocls and Resources

Symbolic Evaluators

Symbolic execution is & verification technique that
simulates software execution using symbols rather than actusal
values as input data [DAC 85]. The execution output consgists of
logical or mathematical expressions with these symbols
representing the component's variablas. Toole that implement
symbolic execution are usually called symbolic evaluators. One
significant function performed by these tools is constraint
evaluation which congists of simplifying path imput or output
constraints and determining their consistency with pre-existing
congtraints. This function is also implemented in some test
data generators.

Test Data Generators

A test data generator is a tool that aids in the generation
of test date for software components [DeM 87]. This relieves
the tester of much of the tedium involved in the generation of
large amounts of test data and avoids the introduction of bias
into the test set when the tester is, in fact, the software
developer. It should be noted that the test data generator can
only partially automate the construction of test cases, since a
test case consists of both test data and expected output. The
expected output is usually determined by hand calculation or
simulation. . ' . :

The three primary types of test data generators are
pathwise, data specification, and random test data generators,
Pathwise test data generators create input date that is a
comprehensive representation of the input space by selecting
input data from the input domeins associated with the software's
paths. Data specification systems provide & data specification
language that the tester uses to describe the input data. The
system then uses the description to generate the desired input
data. Random test generators select random pointe from the
domain of each input variable of a component, For the
randomness to be meeningful, it must be applied to both the
selection of date within & path domain and the selection of the
path domains,

Program Instrumenters

Program instrumenters insert monitoring statements, Or
prches, into the source code of the software component under
test to gather execution data that reveals detailed information
concerning the software's internal behavior and performance,
Functione performed or supported by existing progranm
instrumenters are usually selected from the following set [DAC
85, DeM 87].

108

. e o b e S . om. & ...

L e

Chapter 6:'vSoftwn;e Test Tools and Resources

"y

Asseartion Checking: The evaluation of user—embedded

statements in a component that assert relationships between
- its elements. An assertion is & logical expression

: specifying a program state that must exist or a set of
. conditions that the variables must satisfy at a particular
point during software execution.

Regsource Utilization Analysis: The gathering and evaluation
of system hardware or software resource utilization
statistics.

Structural Coverage Analysis: The determination of measures
associated with the invocation of the component's structural
elements to determine the adequacy of a test run. Coverage
analysis is useful when the user is attempting to execute
each staeatement, branch, path, or iterative structure in a
software component.

1 Timing Analysis: The estimation or measurement of execution
time of a software component either by summing the execution
. times of the instructions in each path, or by inserting

probes at specific points in the software and measuring the
‘ execution time between probes.

Tracing: The construction of a record of all or certain
classes of instructions or events occurring during execution
of a software component.

Tuning: The optimization of system/software performance.

Mutation Testing Tools

i Mutation testing tools support test data entry, execution,
and error coverage 8analysis for the purpose of determining the
adequacy of the test data based on the results of program
| mutation [DeM 87]. Bxisting mutation testing systems provide an
| interactive test environmen®, and reporting and debugging
operations that are useful for locating and removing errors.

- am

Chaster 6: Software Test Tools and Resources

Test Support Tools

Test support tools perform & variety of functions such as
test execution coordination, simulation of unavailable inputs or
components, or regression testing [DeM 87],. Automatic test
drivers, also known as test harnesses or testbeds, are software
systems that provide an environment for running software
conponent tests and simulating missing components or subsystems.
They provide s standsrd notation for specifying test cases,
sautomate the verification of test results, and eliminate the
need for writing separate drivers and gtubz for unit and
subsystems testing. Simulators support testing by representing
the circumstances of nominal and stressful operational
scenarios, c¢r other computer systems or software not available
for testing purposes. Regression testing systems support the
selective retesting of modified software to detact faults
introduced during the modification process, or to verify that
changeeé have not caused unintended effects and that the
component getill meets its gpecified requirements. Other tools
of use during the testing process are date collection and
reduction tools, report generators, and error tracking tools.

Once the desired automated testing capabilities have been
defined, decisions mugt be made with respect to the systenm
hardware and software configurations that can be utilized for
testing. For each desired capability, the following
requirements must be defined. First, the target language for
the software testing tool must be specified (i.e., the
programming language used to implement the portion of software
to which the relevant test objective applies). Second, tte
hardware and operating systems available for the execution of
the tests must be defined. Finally, the resources available
(e.g., memory, storage, throughput) for the purposes of testing
must be estimated. These requirements will be used as selection
criteria and constraints during the evaluation of availabie
software testing tools.

6.2 Determining Tool Availability

The four primary sources of software testing tools are
government organizations, government contractors, commercial
organizations, and academia. The approach used to locate tools
within each community differs and is described below (see
Appendir D for pointe of contact).

110

- o [S

Chapter 6: Snftwvare Teet Tools and Rescurcas

Conmunicetion within the Military Services and other
governument organizations normally follows well-defined chains of
command. Thus, when trying to identify existing software
testing tools, the first point of contact would be the
individual or group within the Headquarters organization that is
responsible for MCCR or embedded computer resources. The next
point of contact would be within the Development Commands. From
there, references to individusal Program Offices, Logistics
Groups, or Laboratories would be exzpected.

An exception to this (soon to be the rule) occurs if the
target language of interest is the Ada language. In that case,
the Ada Joint Program Office (DUSDRE(R&AT)) is the logical
starting point in a search for testing tools. In addition,
other government agencies that employ the Ada langusge (e.g.,
Defense Intelligence Agency (DIA), Defense Nuclear Agency (DNA),
National Security Agency (NSA), Defense Advanced Research
Projects Agency (DARPA), Defense Communications Agency (DCA))
may also provide opportunities for sutomated support of testing.

Pointers to government contractors can be gained by
goliciting references from the government contacts. Inquiries
directed at industrial organizations (e.g., National Security
Industrial Association (NSIA), Electronica Industries
Association (EIA)) or examination of their conference
proceedings can also prove fruitful,

"Commercial vendors can be expected to advertise in tools
catalogs such as Data Sources. Surveys reported in industry
periodicals such =g DATAMATION and DATAPRO axe also sources of
information about existing commercial products.

Academic¢ enterprises are usually the subject of publications
in journals and presentations at conferences sponsgsored by groups
such as the Institute of Electrical and Electronic Engineers
(IEEE) or the Association for Computing Machinery (ACM). In
addition, since university researchers in the areas of computer
science and softwvare engineering communicate extensively over

" nationel networks, examination of network bulletin boards and

users' groups' newsletters cgn provide information not available
elsewhere, including critical reviews of capabilities.

Finally, the Date and Analysis Center for Software maintains
a8 Software Life Cycle Tools Directory [DAC 85) that includes
entries describing testing tools available from all sources
listed above.

It should be noted that not all tools discussed in public
forumns are necessarily available, at any price, for public use!
In situations where & tool provides a competitive edge, its
developer may label it &s proprietary. Even though it is. used
during the development testing of &8 software system, it will not
be delivered for use during the maintenance of that syster and
other arrangements will have to be made for regression testing.

111

Ce et e ks S8 e ee mw ny me o

Chapter 6: Software Test Tcols and Resources]

In the event that a tool cannot be acquired or developed to l
support the objectives of the overall test program, the software
test planning process must be revisited and the adequacy of the ‘
modified test plans evaluated. In some cases, it may be f
sufficient to determine and docuvment the reduced 1level of
confidence in the test due to the required changes. 1In other
cases, howvever, & significant redesign of the test may be
unavoidable.

6.3 Assessing the Rigk of Using Selected Test Tools

Although the process is not as straightforward as that of
purchasing a spresdsheet packsge for a personsl computer, it is
possible to locate and acquire software testing tools. The
available tools differ greatly with respect to maturity, size of
intended user group, level of support, extent of documentation,
restrictions on usage, and price. Knowing whether s tool was
developed as a commercial venture, custom built, developed
in-house, or the product of a laboratory prototyping activity
can temper expectations., Typical attributes of tools resulting
from each of these development psrsdigms will be described
balow.

Commercially built tools sre usually the most mature of the
four development types listed above. This is due to the intent
to market the tools to a wide audience and provide - support for
the tools while they are in use. In this case, a coumpany's
profits depend on the quality and usability of the tools. The
need for customer satisfaction with respect to usability implies
& greater likelihood of the existence of training materials and
documentation for the tools. In thise case, it is not
unreasonable to request references (i.e., names of individuals
who have experience applying the tools on a real project) so
that relatively unbiased assessments of a tool's effectiveness
and suitability can be comnsidered during the decision-making
Process. Since these tools sre commercial products,
restrictions on distribution and modification usually exist.

Custom built tools will not usually have been subjected to
the same degree of examination prior to delivery as commercially
available products. In addition, since &ll costs associated
with development must be borne by a single customer, their
prices are usually significant. For the investment, the
customer can expect & tool that satisfier 8 specific customer
need as opposed to a widespread generic neel. The degree of
documentation, training aids, and support provided with custom
built tools depends very muclh on the customer's willingness to
support these items. Although it seems apparent that the
customer would own unlimited rights with respect tc tools usage, :
this cannot be assumed; care must be exercised during : !
negotiation of the tool development contract.

112

Chapter 6: Software Test Tools and Resources

Software tecsting tools built "in-house™ graatly resemble
custom built tools. However, one potential hazard asssociated
vith their development must be stressed, With the custom built
tools described above, it wvas assumed tu«t a legal contractual
agreenment would specify the requirements for the tool's
functionality, documentation, training aids, support, and
acceptance. When the tool development is conducted within the
customer organiszation, the danger always exists that resources
will be shifted with the changing demands and atzosphere of the
company business. Rather than the tool bdenefiting from a
concentrated effort, it may be tresated as a toy to be worked on
during the development personnel's spare time. The development
of a software testing tool is a software development effort and
nust be subjected to the same discipline as any other
development if similar quality achievements are to be expected.

The final type of tool development to be addressed here is
that of tools resulting from isfforts conducted in a laboratory.
These tools are usually prototypes built for the purpose of
feasibility assessments or proof of principle investigations.
Very seldom are they considered to be "industrial-strength".
They may contain numerous errors, suffer from inefficient
implementation, and have little or no supporting documentation
or training informationm. The benefits of laboratory tools are
that they usually ‘mplement state-of-the-art testing
methodologies and, in some cases, can be obtained for a token
fee. Although it is not wise to assume that a laboratory tool
can be applied to a project "as-is", if resources are available
to productize and support the tocl, it can be a good investment,

In cases where the software testing tools are to be
supported by the using organizations, the determination of tool
suitability must be concerned with its maintainability. 1Issues
of importance include the implementation language of the tool,
the avgilability of development documentation as opposed to
usage documentation, and the employment of modern software
engineering prsctices during the tool's development, These
issues are even more important if there are plans to tailor or
add new capabilities to the tool after acquisition. Tf future
plans include porting the tool to a8 new hardware/software
configuration, examination of the tool prior to acquisition
should also be concerned with issues such as the isolation of
machine dependencies in the design and the implementation.

113

P R ——

- e

Chapter 6: Software Tast Tocls and Rcsources

A primary requirement for the implementation of & sound
so.tvare test program is the acquisition of software testing
tools to support defined test objectives. However, the use of
these tools may introduce riskas to the development project.
First, thare are technicel risks introduced by unproven tools
that must be eliminsted by testing to validate their
correctness. Second, schedule risks are concerned with the tool
being available for the planned software testing; the allotment
of sufficient time for the training of personnel using the
testing tool; the pr~per amount of time being allowed for the
actual testing to occur; and the considerstion of teating
alternatives in the event that the testing tool is not
availadble. Third, budget risks address the hidden costs that
are introduced due to the resources needed for the execution of
the testing tools; the training of personrel for using the
softvare testing tools; and the maintenance of the tools. The
avareness that these risks may accompany the use of software
testing tools should not discourage their use but ansure that
proper management and planning for the use of automated
technology are incorporated in the software test program.

114

peaton

——— Pror Potbomrne |

CcoTS
bCP
DID
DoD
DoDD
DT
DT&E
HUD
I0C
IPS

Is0/081

IVev
JRMB
MCCR
0SD

m
+

OT&E

OTs

SLOCe

SRS

APPENDIX A
LIST OF ACRONYMS

Commercial Off~the-Shelt
Decision Coordinating Paper
Data Item Descriptions
Dupartment of Defense
Department of Defense Directive
Development Test

Development Test and Evaluation
Heads Up Display

Initial Operational Capability
Integrated Program Summary
International Organization for

Standardization/Open Systems
Interconnection

Independent Verification and Validation

Joint Resources Management Board
Migsion Critical Computer Resources
Cffice of the Secretary of Defense
0perationa¥ Test

Operetional Test and BEvaluation
0ff-the-Shelf

Quality Assurance

Systenu Concept Paper

Source Lines of Code

Scoftware Requiremente Specification

'- .
[y
n

SSA Software Support Agency

888 Systea/Segment Specification

STD Software Test Description

STP Softwars Test Plan

STPR Softwaze Test Procedure

STR Software Test Raport

T&E Test and Evsluation

TEMP Test and Evaluation Master Plan

116

lAlg

[(Boe

[Boe

[DAC

[DeM

[DeM

[E&V

[EIA

[O0rl

[Red

77]

76]

81)

851

86]

87]

84]

84)

84]

84]

Wﬁ—*w’ YRS T T - T wST ot w v v Tt W T e o w -—

APPENDIX »
REFERENCES

Alford, M. W., "A Requirements Engineering Methodology

for Real Time Processing Requirements,™ IREER
Transactions on Computers, January 1977, pp. 60-69.

Barry W. Boehm, "Software Engineering," IEEER
Transactions on Computers, December 1976, pp.
1226-1241.,

Barry W. Boehm, Software Engineering Economics,
Prentice-Hall, Inec., 1981,

Data & Analysis Center for Software, "Software Life
Cycle Tools Directory,™ IIT Research Institute, March
1985,

Richard A, DeMillo, "Functional Cepabilities of a Test
and Evaluation Subenvironment in an Advanced Software
Engineering Enviromment,"™ Software Engineering
Research Center Report No. GIT-SERC-86/07, Georgia
Ingtitute of Technology, October 1986.

"Richard A. DeMillo, W. Michael McCracken, R. J.

Martin, snd John F, Passafiume, Softwvare Testing and
BEvaluation, Benjamin/Cummings Publishing Company,
1987.

"Evaluation and Validation Plan," Version 2,0,
Prepared for the Ada Joint Program Office,
Wright-Patterson Air Forse Base, Ohio, December 1984,

Electronics Industries Association, Requirements
Committee, Government Division, "Analyses and
Forecasts of Specific Markets: DoD Computing
Activities & Programs,™ December 1985.

Orlando I Software Workshop, Panel B, "Independent
Verification and Validation,™ Final Report of the
Joint Logistics Commanders' Workshop on_ Post
Deployment Software Support (PDSS) for
Mission-Critical Computer Scftware, Volume I -
Workshop Proceedings, June 1984.

Samual T. Redwine, Jr., Louise Giovane Becker, Ann B,
Marmor-Squires, R. J, Martin, Sarah H. Nash, and
William E. Riddle, "DoD Related Software Technology
Requirements, Practices, and Prospects for the
Future," Institute for Defense Analyses Paper P-1788,
June 1984,

117

PR T S Y U S

e - —— . _

— 2. _&a . a

[Ros 77

[STE 86]

[Tei 77]

D. Ross, and K, Schoman, "Structured Analysis for

Requirements Definition," IEEE Transactioas on’

Softwvare Engineering, Jauuvery 1977, pp. 6-15,

Scftware Test and Evaluation Project, "Software Test
and Evaluation Manual, Volume 1IIl1, Good Examples of
Software Testing in the Departmcnt of Defense,"
Software Engineering Research Center Report No.
GIT-SERC-86/06, Georgia Institute of Technology,
October 1986.

D. Teichroew, and E, Hershey, "PSL/PSA: A Computer
Aided Technique for Structured Documentation and
Analysis of Information Processing Systems,"™ IEEE
Tranzactions on Software Engineering, January 1977,
ppo A]."Aa-

118

-

- - - - - At " — Tww Teemt TR
——.—-—w-- Nt . C—~— - - - - - A A sl Al S AREn

APPENDIX C
DEPARTNENT OF DEFENSE DIRECTIVES AND STANDARDS

DoD Directive 5000.1, "Major System Acquisitions,™ March
12, 1986.

DoD Directive 35000.3, "Test and Evaluation,"™ March 12,
1986,

DoD 5000.3~-M~-1, "Test and Evaluation Master Plan
Guidelines,™ October 1986.

DoD-8TD-2167, "Defense System Software Deveolopment,®™ June
4, 1985.

11¢

APPENDIX D

TS W T Y Y Ty
lﬂ-ﬁ‘;

POINTS OF CONTACT

1] 4 &

- i; Software Life Cycle Tools Directory
| Data & Analysis Center for Software (DACS)
; RADC/COED

Griffiss AFB, New York 13441
. (315) 326-0937
o Autovon 587-3395

i Catalogs

i Data Sources
| P.0. Box 5854
) Cherry Hill, New Jersey 08034

: DATAPRO

1805 Underwood Boulevard
"Delran, New Jersey 08075
. ‘ : (609) 764-0100

Ada Tools

Ada Information Clearinghouse

Rm, 3D139 (Fern St./C-107)
The Pentagon

Waeshington, DC 20301-30831
(703) 685-1477

e e —— g ™ v

: Industry Periodicals
F
; DATAMATION

875 Third Avenue
, New York, New York 10022

121

. m. matan A ol b ni o e . malmn . . s A . . e emlran B S— ol

Industrial Organizations

Electronics Industries Assoriation
2001 Eye Street, N.W.

Washington, D.C. 20006

(202) 457-4900

National Security Industrial Association
Suite 901, 1015 15th Street, N.W.
Waghington, D.C., 20005

(202) 393-3620

Professional Societies

Association for Computing Machinery
1133 Avenue of the Americas
New York, New York 10036

IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 9008C

122

_ AR e e . A ade. . s A,

o e e o . .

-

